Skip to main content
  • Negar Kiyavash - Network Inference: from Passive to Active Learning

  • Wednesday, August 08, 2018 2:00 PM - 3:00 PM EDT
    Fung Auditorium, Powell-Focht Bioengineering Hall
    University of California, San Diego

    **Please note this event starts at 11:00 AM PDT**

    Abstract


    One of the paramount challenges of this century is that of understanding complex, dynamic, large-scale networks. Such high-dimensional networks, including social, financial, and biological networks, cover the planet and dominate modern life. In this talk, we propose novel approaches to inference in such networks, for both active (interventional) and passive (observational) learning scenarios. We highlight how timing could be utilized as a degree of freedom that provides rich information about the dynamics. This information allows resolving direction of causation even when only a subset of the nodes is observed (latent setting). In the presence of large data, we propose algorithms that identify optimal or near-optimal approximations to the topology of the network.


    Biography

    NegarKiyavashis a joint Associate Professor in the H. Milton Stewart School of Industrial & Systems Engineering (ISyE) and the School of Electrical and Computer Engineering (ECE) at Georgia Institute of Technology (Gatech). Prior to joining Gatech, when was a Willett Faculty Scholar at the University of Illinois and a joint Associate Professor of Industrial and Enterprise Engineering (IE) and Electrical and Computer Engineering (ECE). She received her Ph.D. degree in ECE from the University of Illinois at Urbana-Champaign in 2006. Her research interests are in design and analysis of algorithms for network inference and security. She is a recipient of NSF CAREER and AFOSR YIP awards and the Illinois College of Engineering Dean's Award for Excellence in Research.



Copyright © Purdue University, all rights reserved. Purdue University is an equal access/equal opportunity university.

Contact the College of Science at sciencehelp@purdue.edu for trouble accessing this page. Made possible by grant NSF CCF-0939370