Cybernetic Modeling of the Eicosanoid Pathway in Macrophage Cells

Presenting Authors: Lina Aboulmouna and Rubesh Raja

JACOBS SCHOOL OF ENGINEERING

 $d[PGH_2]$

PURDUE

 $\sum_{r \in \mathcal{F}_{PGH_2} \to PG_i}^{reg} = v_i r_{PGH_2 \to PG_i}^{kin}$

https://www.azuravesta.com

Standard Mathematical Modeling for Biological Networks

Standard Mathematical Modeling for Biological Networks

Standard Mathematical Modeling for Biological Networks

Alternate modeling framework: Cybernetic model

Reaction Kinetics

$$\frac{dP_i}{dt} = k_i e_i S_i - g_i P_i$$

$$\frac{de_i}{dt} = k_{e,i}S_i - \beta_{e,i}e_i$$

Introducing cybernetic control variables

$$\frac{dP_i}{dt} = v_i k_i e_i S_i - g_i P_i$$

$$\frac{de_i}{dt} = u_i k_{e,i} S_i - \beta_{e,i} e_i$$

Introducing cybernetic control variables

Introducing cybernetic control variables

Defining cybernetic control variables

Goal: Survival

Specific goal: Maximize biomass production rate within available resources

Return on investment:
$$\rho_i = r_{S_i \to P_i}^{unregulated} = k_i e_i S_i$$
 $v_i = \frac{\rho_i}{\max_j \rho_j}$
 $u_i = \frac{\rho_i}{\sum_j \rho_j}$

Diauxic growth of E. coli

Kompala, D.S., et al., *Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models.* Biotechnol Bioeng, 1986. **28**(7): p. 1044-55.

Multicellular Systems

Cybernetic goal for macrophage cells

Eicosanoid Metabolism

Cybernetic Model of Eicosanoid Metabolism

2 objectives:

Part1: Kinetic model

$$\frac{dP_i}{dt} = k_i e_i S_i - g_i P_i - (downstream fluxes)$$

$$\frac{de_i}{dt} = k_{e,i}S_i - \beta e_i$$

Part2: Cybernetic Regulation with **Cytokines**

$$\frac{dP_i}{dt} = v_i k_i e_i S_i - g_i P_i - (downstream fluxes)$$

$$\frac{de_i}{dt} = u_i k_{e,i} S_i - \beta e_i$$

Part3: Cybernetic Regulation with **Chemokines**

Reaction Framework: s₁ + P₁

$$\frac{dP_i}{dt} = v_i k_i e_i S_i - g_i P_i - (downstream fluxes)$$

$$\frac{de_i}{dt} = u_i k_{e,i} S_i - \beta e_i$$

Part3: Cybernetic Regulation with **Chemokines**

$$\frac{dP_i}{dt} = v_i k_i e_i S_i - g_i P_i - (downstream fluxes)$$

$$\frac{de_i}{dt} = u_i k_{e,i} S_i - \beta e_i$$

Enzyme Synthesis Control

$$u_i = \frac{\rho_i}{\sum_j \rho_j}$$

 $v_i = \frac{\rho_i}{max_i(\rho_i)}$

Enzyme Activity Control

A closer look at Part 2

Defining the Cybernetic Goal

$$\mathrm{TNF}\alpha = \sum_{i} w_i P G_i$$

The Cybernetic Variables

GOAL: "dynamically maximize $TNF\alpha$ "

$$\mathsf{TNF}\alpha = \sum_{i} w_{i} P G_{i}$$

The Cybernetic Variables

GOAL: "dynamically maximize $TNF\alpha$ "

$$\mathrm{TNF}\alpha = \sum_{i} w_i P G_i$$

 $\rho_i = w_i r_{PGH_2 \to PG_i}^{unregulated}$

The Cybernetic Variables

GOAL: "dynamically maximize $TNF\alpha$ "

$$\mathrm{TNF}\alpha = \sum_{i} w_i P G_i$$

 $\rho_i = w_i r_{PGH_2 \to PG_i}^{unregulated}$

Enzyme Synthesis Control

$$u_i = \frac{\rho_i}{\sum_j \rho_j}$$

Enzyme Activity Control

$$v_i = \frac{\rho_i}{max_j(\rho_j)}$$

Parameter Estimation: Simulating ATP Stimulated BMDM Cells

Parameter Estimation: Simulating ATP Stimulated BMDM Cells

Model Validation: Predicting KLA Primed & ATP Stimulated BMDM Cells

Model Validation: Predicting KLA Primed ATP Stimulated BMDM Cells

Cybernetic Model of Eicosanoid Metabolism

2 objectives:

Guo XJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Seminars Immunopathology. 2017 Jul;39(5):541-550. DOI: 10.1007/s00281-017-0636-y.

NSAIDs and COX

Special thanks to...

Center for Science of Information NSF Science and Technology Center

Dr. Doraiswami Ramkrishna Harry Creighton Peffer Distinguished Professor

> CHEMICAL PURDUE ENGINEERING

Dr. Shankar Subramaniam Distinguished Professor of Bioengineering, Bioinformatics and Systems Biology

JACOBS SCHOOL OF ENGINEERING

