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Abstract
Aim: Climate change has impacted forest ecosystems, leading to species-level tree 
migration. However, the impacts of climate change on forest communities are mostly 
unknown. Here, we assess changes to forest communities at three scales: within-
community changes in species composition, individual community spatial shifts and 
changes across all communities.
Location: Eastern USA.
Major taxa studied: Forest tree species.
Methods: Using a region-wide forest inventory dataset from the United States 
Department of Agriculture Forest Service's Forest Inventory and Analysis Program 
with > 70,000 plots, we identified forest communities using the latent Dirichlet  
allocation method. We analysed changes in species composition within communities 
and assessed community-level spatial shifts over the last three decades to quantify 
the responses of individual communities to climate change. We used the distribution 
of forest communities across climate conditions to predict where communities could 
migrate to during the study period and compared climate-predicted shifts with ob-
served community shifts. Changes across all communities were modelled as a function 
of climatic and non-climatic variables using generalized linear mixed-effects models.
Results: We identified 12 regional forest communities of the eastern USA, which varied 
in their stability of species composition over the study period. All communities experi-
enced relatively short yet significant shifts in their spatial distribution (median = 8.0 km/
decade). Historical climate and changes in seasonal temperature variability were the 
best predictors of change across all communities. However, the distance and direction 
of individual community migration were poorly predicted by climate change, and the 
observed direction was often the opposite of the predicted direction.
Main conclusions: Forest communities shifted their distributions over the last three 
decades, but climate change outpaced the rate of community migration. Continued 
lags between climate change and forest community responses and the lack of migra-
tion in the direction predicted by climate change might lead to the inability of forests 
to keep up with changing climate.
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1  | INTRODUC TION

Forest ecosystems across the USA are threatened by human 
disturbance (Riitters, Coulston, & Wickham, 2012; Vanderwel & 
Purves, 2014), invasion of non-native plants and pests (Fei, Morin, 
Oswalt, & Liebhold, 2019; Oswalt et al., 2015), and climate change 
(Fei et al., 2017; Iverson & Prasad, 1998). Among these major 
threats, climate change has been shown to cause tree species to 
shift their distributions. Often, species have moved to higher lat-
itudes or elevations in response to temperature change (Lenoir, 
Gégout, Marquet, De Ruffray, & Brisse, 2008; Woodall et al., 2009; 
Zhu, Woodall, & Clark, 2012), but westward movement has also 
been observed in response to change in precipitation (Fei et al., 
2017). Changes in the distribution of forest species can have se-
vere consequences for ecosystem functioning; however, changes 
at the community level, impacting not only the species composi-
tion but also the interactions among species, might be even more 
important to ecosystem functioning (Loreau et al., 2001; Symstad, 
Tilman, Willson, & Knops, 1998). Understanding the effects of cli-
mate change and other large-scale threats to forest communities 
is important for predicting the future sustainability of forests and 
the services they provide.

Ecologists have attempted to define communities for more than 
a century, but communities are dynamic, and their stability is increas-
ingly questioned owing to climate change. Early attempts at defining 
communities, such as those of Clements (1916) and Gleason (1926), 
revealed multiple conflicting views of ecological communities. 
Clements (1916) argued that communities acted as superorganisms 
that matured into a climax community determined by regional mac-
roclimate, whereas Gleason (1926) argued that communities were 
artificial groupings of overlapping species distributions created by 
individualistic responses to environmental gradients. In addition to 
the difficulty of defining communities, Braun (1950) identified large-
scale, subcontinental patterns of forest species distributions, which 
Davis (1983) showed were the result of post-glaciation migrations of 
individual species over the last five millennia. As a result of these mi-
gration patterns, distinct forest regions emerged that were consid-
ered mostly stable in the recent past (Braun, 1950), but their current 
and future stability is questionable given decade-scale tree species 
migrations in response to recent climate change (e.g., Fei et al., 2017; 
Woodall et al., 2009; Zhu et al., 2012) that rival the distance of these 
historical millennium-scale post-glaciation migrations.

In addition to difficulty in defining communities, data availabil-
ity and computational complexity often limited earlier attempts 
at description and analysis of changes to ecological communities. 
Many early studies were based on limited, local-scale samples and 
used simplified statistical tests or anecdotal evidence. The avail-
ability of large-scale datasets (e.g., Forest Inventory and Analysis 
from the United States Department of Agriculture  [USDA] Forest 
Service; FIA) containing tens of thousands to millions of observa-
tions and the advancements in analytical techniques for big data (e.g., 
Bayesian statistics and machine learning) have allowed researchers 
to confirm the patterns in species co-existence observed by earlier 

studies and provide greater detail about these communities (Dyer, 
2006; Peters et al., 2014). However, these large-scale community 
analyses still have underlying problems related to the abundance 
and complexity of data. First, many multivariate methods rely on 
the creation of a distance matrix in multidimensional species space 
to determine whether they exhibit different species compositions 
(Costanza, Coulston, & Wear, 2017; Legendre & Legendre, 2012). 
These approaches can be influenced by the abundance of non-over-
lapping species (i.e., the “double-zero” problem), where patterns are 
driven by the lack of species co-occurrence (Legendre & Legendre, 
2012). As such, distance metrics used in multivariate analyses need 
to be considered carefully in order to minimize these effects (Dyer, 
2006). Multivariate methods are good at detecting abrupt changes 
between the communities, but may fail to detect differences 
when transitions between communities occur slowly (Valle, Baiser, 
Woodall, & Chazdon, 2014). In addition, the creation and analysis 
of a distance matrix for tens of thousands of samples can become 
computationally unfeasible (e.g., a distance matrix between 80,000 
samples, the approximate size of the FIA database for the eastern 
USA, contains 6.4 billion entries). Second, irregular sampling density 
can cause community delineations to be biased by areas where for-
ests are more abundant. Regions such as the southern Appalachian 
Mountains or the upper Midwest that have large regions of contin-
uous forest with many sampling sites in the FIA database can drive 
the patterns found in traditional clustering and multivariate meth-
ods. Thus, the results of these methods may provide great detail 
about one region but little detail about a more sparsely forested or 
sampled region. There is a need to address these problems by using 
different models of species co-existence.

Here, we take a multiple-lens view of forest community changes 
over time by assessing changes at multiple scales: (a) within-commu-
nity changes in species composition; (b) spatial shifts of individual 
communities; and (c) changes in composition and dominance across 
all communities. We first needed to identify forest communities, and 
we used the latent Dirichlet allocation (LDA) topic model (Blei, Ng, & 
Jordan, 2003; Valle et al., 2014) to identify forest communities within 
two datasets (T1, 1980s and T2, 2010s), each containing > 70,000 FIA 
plots. As such, communities in this study are similar to those consid-
ered in traditional local-scale ecological studies but are more general-
ized given the large amount of data used to identify consistent patterns 
in species associations. The resulting communities, therefore, repre-
sent regional species assemblages or regional forest types similar to 
those defined by Braun (1950), Dyer (2006) or Costanza et al. (2017). 
Our first assessment of forest community changes was to analyse: (a) 
changes in species rank within a community (i.e., changes in dominant 
species of the community); (b) changes in the contribution of species to 
a community (i.e., shifts in the proportion/abundance of each species 
in each community); and (c) the gain or loss of species over time. These 
analyses would reveal whether new assemblages of species are formed 
or if the species composition of existing communities is shifting. Our 
second assessment of forest community changes was to test whether 
communities were shifting their geographical distributions and if the 
community migrations were tracking with climate change. Given recent 
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knowledge of spatial shifts at the species level (Fei et al., 2017; Zhu 
et al., 2012), we aimed to test whether forest communities were also 
shifting their distributions in response to climate change. Finally, our 
third assessment of forest community changes was to identify areas 
with high levels of community change and test whether these areas 
were also experiencing greater levels of climate change. By taking this 
multiple-lens view of forest community responses to climate change, 
we can gain a better understanding of the ways in which forest com-
munities change over time and can use this information to address the 
future sustainability of forest communities in a continuously changing 
global climate.

2  | METHODS

2.1 | Forest inventory data

The USDA Forest Service's FIA program is a nationwide sampling 
effort of approximately one plot per 2,428 ha (6,000 acres) of for-
ested land, containing c. 130,000 plots nationwide and c. 80,000 
plots in the eastern USA. We selected FIA data from the eastern 
USA, encompassing 37 states and the following four ecoregions 
(Cleland et al., 2007): the northern hardwood region (NHR), the 
central hardwood region (CHR), the forest–prairie transition region 
(FPTR) and the southern pine–hardwood region (SPHR) (Supporting 
Information Table S1; Figure S1). We compiled two datasets (T1 
and T2) to assess changes over the last three decades. Before the 
early 2000s, the FIA program used a periodic sampling protocol, 
in which states completed sampling every 10–15 years. More re-
cently, a panel system for FIA sampling has been used, where each 
year partial sampling is completed and states report sampling every 
5–7 years when all plots in the state have been sampled. Therefore, 
the year of completion varied across the eastern USA for both time 
periods. For the first period (T1), we used the first measurement 
available in 1980 or later (a full periodic sample from each state 
completed in a single year from 1980 to 1995). For the second pe-
riod (T2), we used measurements from sampling that concluded in 
2015–2017 (the compiled sampling that was carried out over the 
previous 5–7 years). The median interval between T1 and T2 sam-
pling periods in each state was 31 years.

Ideally, we would have used data for all species available in the FIA 
database. However, some species were aggregated to the genus level 
in surveys from certain states at T1. For example, coastal states from 
Virginia to Florida have Celtis genus-level records at T1 but have Celtis 
occidentalis and Celtis laevigata recorded separately at T2. Likewise, 
some genera (such as the Carya genus) were identified to the genus 
level at T1 across most of the range. Therefore, we assigned species 
with only genus-level samples at T1 to their genus-level species code 
even when species-level data were collected at T2. Likewise, ash spe-
cies (Fraxinus species) were aggregated to the genus level to reduce 
the effects of uncertainty from known identification issues (e.g., over-
lapping ranges of species with similar morphological characteristics). 
Additional species that were not aggregated to the genus level were 

considered rare and removed from the dataset if they occurred in <300 
plots (following Fei et al., 2017). The final species list included 138 spe-
cies of interest (out of c. 263 species in the FIA database for the eastern 
USA) that were aggregated into 85 new species or genus labels (here-
after, “species”; Supporting Information Table S2).

We used three metrics to measure species abundance in each 
plot: relative basal area, relative stem density and importance value 
(average of relative basal area and relative density). These metrics 
were derived for all stems and two separate size classes: < 5.1 cm 
diameter at breast height (d.b.h.) (hereafter, saplings) and > 5.1 cm 
d.b.h. (hereafter, trees). The use of relative metrics allowed each plot 
to be weighted equally (i.e., the sum of the importance values for 
all species in each plot was equal). All values were rounded up to 
the nearest integer percentage to accommodate for the LDA model 
(which was built using integer word counts) and to avoid removing 
species from samples where they had low abundance (with a metric 
value between 0 and .5%). The plot-level data were used to fit the 
LDA model. However, to account for the spatial mismatch between 
T1 and T2 (i.e., not all plots inventoried at T1 were re-inventoried 
at T2 or vice versa), we aggregated plot-level results to a 1,452 km2 
hexagon tessellation following Fei et al. (2017). To reduce the poten-
tial biases in our analysis of spatial shifts caused by hexagons with 
few FIA plots (i.e., dramatic community turnover attributable to mis-
match in sampling), we selected hexagons that contained > 10 FIA 
plots at both T1 and T2. A final total of 89,231 plots at T1 and 75,715 
plots T2 fell into 1,813 hexagons with > 10 FIA plots.

2.2 | Identifying forest communities with the latent 
Dirichlet allocation model

The latent Dirichlet allocation topic model is a Bayesian hierarchi-
cal model that was developed to identify topics in text data based 
on the frequency and co-occurrence of words across hundreds to 
thousands of documents (Blei et al., 2003). It has been used widely 
for text mining (e.g., Tirunillai & Tellis, 2014), but has recently been 
expanded to other uses in the natural sciences, such as remote sens-
ing, vegetation classification and community detection (Damgaard, 
2015; Tang et al., 2013; Valle et al., 2014). For community detec-
tion, the analogy to traditional text mining is clear; communities (or 
topics) are based on the frequency and co-occurrence of species (or 
words) across hundreds to thousands of plots (or documents). The 
LDA model is a Bayesian hierarchical model that assumes a gen-
erative process to forest (or document) sampling (or creation) (Blei 
et al., 2003; Valle et al., 2014). This assumption means that first a 
forest (or document) selects a number of communities (or topics) to 
include in the sample, following a Dirichlet distribution. Then, for 
each community (or topic), a number of species (or words) related to 
the community (or topic) are chosen. The posterior distributions of 
the LDA model contain two main components: (a) the proportion of 
each community in each sample (or each topic in each document); 
and (b) the proportion of each species in each community (or each 
word in each topic).
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We ran the LDA model on the T1 data using the built-in Gibbs 
sampler in the “topicmodels” package in R (Grün & Hornik, 2011), with 
5,000 iterations and a 500 iteration burn-in period. The LDA model 
requires specification of the number of groups a priori. Given that we 
did not have a priori knowledge of the exact number of communities 
in the FIA data, we used an iterative approach, increasing the number 
of communities, k, by one, from two to 50. We used the plot-level 
data with importance value for all stems to fit the LDA model. The 
models were evaluated for the goodness-of-fit and complexity using 
a suite of four metrics (Arun, Suresh, Veni Madhavan, & Narasimha 
Murthy, 2010; Cao, Xia, Li, Zhang, & Tang, 2009; Deveaud, SanJuan, 
& Bellot, 2014; Griffiths & Steyvers, 2004) from the “ldatuning” pack-
age in R (Nikita, 2016). The value of k is chosen by maximizing two 
of the metrics (Deveaud et al., 2014; Griffiths & Steyvers, 2004) and 
minimizing the other two (Arun et al., 2010; Cao et al., 2009); there-
fore, we included possible values of k that were at these maximum and 
minimum values of the four metrics. Owing to the asymptotic nature 
of the metrics, we also included breakpoints indicated by multivariate 
adaptive regression splines (MARS regression; Friedman, 1991) using 
the “earth” package in R (Milborrow, 2017). Finally, we used the pos-
terior distributions from the candidate models to evaluate an ecolog-
ically based metric, the number of species with proportion > 1/nspecies 
in each community, to remove models that contained communities 
that were composed of only one species. To test whether there were 
differences between input data type (i.e., relative basal area, relative 
density, or importance value for saplings, adults or all stems), we used 
the best-fitting model to initialize new models with different input 
data and tested for differences in species composition using Mantel 
tests using the “ade4” package in R (Dray & Dufour, 2007). After iden-
tifying the best-fitting model from the T1 data, we used the posterior 
distributions to initialize the T2 model. Doing so allowed the species 
composition of the communities to begin aligning with the T1 commu-
nities but then change progressively to fit the T2 data, reflecting the 
way that communities change naturally over time. We compared the 
species composition between T1 and T2 to identify communities that 
changed the dominant species or lost/gained species.

To visualize the distribution of identified communities and calcu-
late measures of community change over time, we aggregated our re-
sults to the 1,452 km2 hexagon tessellation (Supporting Information 
Figure S1) by taking the average community proportion across all 
plots within a hexagon. We then created regional forest community 
maps for T1 and T2 by mapping the community with the highest pro-
portion in each hexagon. We used these maps to identify hexagons 
where the dominant community type changed between T1 and T2 
and create a transition matrix containing the proportion of hexagons 
changing from one dominant community type to another through-
out the study period. Non-forested areas were masked out using the 
2011 National Land Cover Database for visualization purposes only 
(https://www.mrlc.gov/data). A GIS shapefile with the posterior dis-
tribution of communities in each hexagon and a spreadsheet of the 
posterior distribution of species in each community are available at 
https://www.doi.org/10.4231/GCE5-ZY59.

2.3 | Climatic and non-climatic forest condition data

The PRISM climate dataset (4 km resolution) was used to create 
normal values of climate for 30 years leading up to the T1 FIA 
sampling (1951–1980; hereafter, “historical climate conditions”) 
and 30 years during the study period (1986–2015; hereafter, 
“study period conditions”; PRISM Climate Group, Oregon State 
University, http://prism.orego nstate.edu/). The PRISM dataset 
contains the monthly mean, maximum and minimum temperature 
and monthly accumulated precipitation. We calculated the mean 
of monthly mean temperature (MAT), the minimum of monthly 
minimum temperature (TMIN), the maximum of monthly maximum 
temperature (TMAX) and the sum of monthly precipitation (TAP) 
across the 12 months in each year. We also calculated climatic vari-
ability by taking the standard deviation (SD) of monthly precipita-
tion (PSD), SD of monthly minimum temperature (TMINSD), SD of 
monthly maximum temperature (TMAXSD) and the temperature 
range (annual maximum temperature minus annual minimum tem-
perature; TRANGE). Therefore, TRANGE, TMINSD and TMAXSD 
are measures of seasonal temperature variability, and PSD is a 
measure of seasonal precipitation variability. Temperature and 
precipitation conditions are closely linked to drought severity (Hu 
& Willson, 2000; McEwan, Dyer, & Pederson, 2011); therefore, we 
used Palmer drought severity index (PDSI) data (from the same 
two periods, 1951–1980 and 1986–2015) to test whether drought 
severity was a better predictor of community change than the 
PRISM-derived temperature and precipitation variables (available 
at https://wrcc.dri.edu/wwdt/). Then, we averaged each variable 
across 30 years before and during the study period (1951–1980 
and 1986–2015, respectively). We calculated the difference be-
tween historical climate conditions and study period conditions 
for each variable to use as indicators of climate change (hereafter, 
“climate-change variables”).

A variety of non-climatic factors can influence forest dynamics, 
and we aimed to test forest developmental stage, nitrogen deposi-
tion and fire frequency as potential drivers of community change 
(hereafter, “non-climatic variables”). Given that we do not have re-
liable information on the tree or stand age, we used hexagon-level 
total basal area (BA) at T1 (across all species in all plots in each hexa-
gon) as a proxy for forest developmental stage, following Fei et al. 
(2017). We also calculated hexagon-level total basal area at T2 and 
took the difference between T1 and T2 as a measure of forest de-
velopment over the study period. Nitrogen deposition data (NDEP) 
during a portion of the study period (2000–2015) were aggregated 
at the hexagon level (available at http://nadp.slh.wisc.edu/), follow-
ing Jo, Fei, Oswalt, Domke, and Phillips (2019). We used the kernel 
density tool in ArcGIS (v.10.4; Esri Inc., USA) on fire-occurrence point 
data during a majority of the study period (1992–2015) as a proxy for 
fire frequency within each hexagon (Jo et al., 2019; Short, 2017). 
We ln-transformed fire frequency [LOG(FIRE)] to normalize the pre-
dictor. Maps of predictor variables are available in the Supporting 
Information (Figure S2).

https://www.mrlc.gov/data
https://www.doi.org/10.4231/GCE5-ZY59
http://prism.oregonstate.edu/
https://wrcc.dri.edu/wwdt/
http://nadp.slh.wisc.edu/
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2.4 | Analysis of individual community changes 
over time

To assess changes in the distribution of communities over time, we 
computed a proportion-weighted community centroid and commu-
nity area for T1 and T2. We used the proportion of the community 
in each hexagon to weight the x–y coordinates of the hexagon cen-
troid and took the difference in community centroid between the 
two time periods to assess the distance and direction of movement of 
the centroid (following Fei et al., 2017). This approach allowed shifts 
in abundance within the community to influence the centroid of the 
community, even if the spatial extent did not change. We assessed the 
significance of the change in latitude, longitude and overall distance 
of the shift using randomization tests by randomly disassociating the 
x–y coordinates with the community proportion and recalculating the 
centroid shifts. We then repeated the randomization process 1,000 
times and calculated a p-value for each community (i.e., the propor-
tion of random shifts larger than the observed shift). All p-values were 
corrected for multiple testing using the Benjamini–Hochberg method 
(PBH; Benjamini & Hochberg, 1995), and shifts were considered signif-
icant when PBH ≤ .05. We also assessed changes in community spatial 
coverage by weighting the hexagon area by the community propor-
tion at T1 and T2. We used randomization tests to assess the sig-
nificance of changes in the community area by randomly reassigning 
community proportions to T1 or T2 and recalculating the difference 
in the proportion-weighted area between the randomly assigned T1 
and T2 groups. This process was repeated 1,000 times to test how 
extreme the observed expansions or contractions were relative to 
random increases or decreases in area.

For each community, we tested whether climate change pre-
dicted shifts in its distribution. We first calculated the relative fre-
quency of the community under each of the nine historical climate 
conditions (eight PRISM-derived variables and PDSI). Then, a kernel 
density tool (density.default in the “stats” package in R; R Core Team, 
2019) was used to create a smoothed probability of occurrence dis-
tribution across each of the historical climate conditions. Locations 
with study period conditions within the range of observed historical 
climate conditions were assigned the corresponding probability of 
occurrence for each of the eight PRISM climate variables and PDSI. 
The probability of occurrence was averaged across the nine vari-
ables to generate a probability of occurrence in each hexagon for 
each community based solely on climate. Next, we calculated the 
climate-predicted centroids for the communities by weighting the 
x–y coordinates of each hexagon by the probability of occurrence 
and compared these centroids with the observed T2 centroids.

2.5 | Analysis of change across communities

The communities in each hexagon are compositional data; that is, the 
proportion of all communities in a hexagon sums to one, which leads 
to a lack of independence between the communities (i.e., if the pro-
portion of k − 1 out of the k communities is known, the proportion 

of the kth community can be derived as one minus the sum of the 
k − 1 community proportions). To reduce the issue of violating inde-
pendence and identify which forest regions are changing the most, 
we calculated the Jensen–Shannon divergence (JSD; Hall, Jurafsky, 
& Manning, 2008; Lin, 1991) between the k-dimensional community 
composition at T1 and T2 using the “philentropy” package in R (Drost, 
2018). The JSD is a measure of dissimilarity between compositional 
data or probability distributions based on the Kullback–Liebler diver-
gence (Lin, 1991). It is calculated by taking the Shannon entropy of 
the average of the T1 and T2 community proportions and subtract-
ing the average of the Shannon entropy of T1 and T2 community 
proportions: JSD=H(

XT1+XT2

2
)−

H(XT1)+H(XT2)

2
, where H is the Shannon 

entropy, H=−
∑

i pilog2pi, and XT1 and XT2 are vectors of community 
proportions in a hexagon at T1 and T2, respectively (Lin, 1991). We 
then square-root transformed JSD to calculate the Jensen–Shannon 
distance (JSDT1,T2), which is a distance metric that is symmetric and 
approximately normal, but bounded by [0, 1] (Lin, 1991).

To test the importance of drivers of community composition, 
we modelled JSDT1,T2 as a function of initial climate conditions, cli-
mate-change variables and non-climatic variables. Theoretically, 
JSDT1,T2 is approximately normal but bounded by [0, 1]; however, 
we found that our measures of JSDT1,T2 were slightly right skewed; 
therefore, we fitted generalized linear mixed-effects models 
(GLMMs) with a beta distribution and logit link (which fitted our 
JSDT1,T2 values better) using the “glmmTMB” package in R (Brooks 
et al., 2017). Owing to collinearity between predictor variables 
(Supporting Information Figure S2), we fitted each model with two 
predictor variables: the historical climate conditions and the change 
between historical and study period conditions. Fire frequency and 
nitrogen deposition contained data during the study period only; 
therefore, we fitted these GLMMs as univariate models. ANOVA re-
vealed significant differences in JSDT1,T2 across the 12 communities 
(F11,1801 = 15.93, p < .001); therefore, we included random slopes 
and intercepts for each dominant community at T1 in our GLMMs. 
However, models that included random slopes failed to converge 
(owing to some communities being dominant in only a few hexagons); 
therefore, we used a random intercept only. Given that the predic-
tor variables were standardized, coefficient values are a measure of 
effect size: a predictor with a larger coefficient value indicates that 
it influences the response more strongly. A total of 1,757 hexagons 
were used in the GLMMs, owing to hexagons with missing climatic 
and non-climate data. All analyses were conducted in R v.3.6.1 (R 
Core Team, 2019), and all maps were projected to the Albers equal-
area conic projection. A full list of R packages used in these analyses 
is available in the Supporting Information (Table S3).

3  | RESULTS

3.1 | Assessment of communities identified by LDA

Using the LDA model on FIA data, we identified 12 dominant forest 
communities in the eastern USA (Table 1; Figure 1). Model selection 
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TA B L E  1   Top species in each community at the two sampling periods

Community Time Species

1. Cherry–oak T1 Quercus rubra (.360), Prunus spp. (.286), Pinus strobus (.177), Tsuga canadensis (.126), Betula lenta  
(.051)

T2 Prunus spp. (.318), Quercus rubra (.238), Pinus strobus (.216), Tsuga canadensis (.148), Betula lenta  
(.081)

2. Central woodlot T1 Ulmus spp. (.346), Pinus virginiana (.117)*, Sassafras albidum (.095), Quercus laevis (.069)*, Celtis spp. (.061), 
Robinia pseudoacacia (.054), Juglans nigra (.046), Acer negundo (.043), Platanus occidentalis (.034), Cercis 
canadensis (.032), Acer saccharinum (.029), Quercus muehlenbergii (.021), Gleditsia triacanthos (.014), 
Populus deltoides (.013), Maclura pomifera (.012)

T2 Ulmus spp. (.382), Celtis spp. (.108), Acer negundo (.088), Juglans nigra (.072), Sassafras albidum (.067), 
Robinia pseudoacacia (.052), Platanus occidentalis (.047), Acer saccharinum (.040), Cercis canadensis (.036), 
Quercus muehlenbergii (.025), Gleditsia triacanthos (.023), Maclura pomifera (.023), Populus deltoides (.020), 
Quercus imbricaria (.012)*

3. Conifer–birch T1 Abies balsamea (.343), Betula papyrifera (.260), Thuja occidentalis (.183), Populus grandidentata (.096), Picea 
glauca (.052), Picea rubens (.046), Betula alleghaniensis (.021)

T2 Abies balsamea (.371), Thuja occidentalis (.131), Betula alleghaniensis (.113), Betula papyrifera (.106), Picea 
rubens (.098), Populus grandidentata (.075), Picea glauca (.059), Acer pensylvanicum (.048)*

4. Pine–tupelo–oak T1 Pinus echinata (.316), Nyssa sylvatica (.235), Pinus palustris (.195), Quercus falcata (.165), Diospyros 
virginiana (.066), Quercus lyrata (.022)

T2 Nyssa sylvatica (.318), Pinus echinata (.199), Pinus palustris (.179), Quercus falcata (.163), Diospyros virginiana 
(.074), Quercus lyrata (.031), Quercus laevis (.030)*

5. Oak–hickory T1 Carya spp. (.302), Quercus alba (.294), Quercus velutina (.160), Quercus stellata (.134), Juniperus virginiana 
(.076), Quercus marilandica (.035)*

T2 Carya spp. (.322), Quercus alba (.287), Juniperus virginiana (.144), Quercus velutina (.123), Quercus stellata 
(.114)

6. Beech–maple T1 Acer saccharum (.372), Fraxinus spp. (.302), Fagus grandifolia (.120), Tilia spp. (.078), Ostrya virginiana (.066), 
Betula alleghaniensis (.045)* Acer pensylvanicum (.014)*

T2 Acer saccharum (.351), Fraxinus spp. (.310), Fagus grandifolia (.182), Ostrya virginiana (.093), Tilia spp.  
(.065)

7. Pine–sweetgum T1 Pinus taeda (.472), Liquidambar styraciflua (.298), Quercus nigra (.108)*, Quercus laurifolia (.054)*, Quercus 
virginiana (.027)*, Quercus phellos (.027), Quercus pagoda (.015)*

T2 Pinus taeda (.674), Liquidambar styraciflua (.301), Quercus phellos (.026)

8. Yellow poplar–oak T1 Liriodendron tulipifera (.279), Quercus prinus (.186), Pinus banksiana (.162), Pinus resinosa (.118), 
Oxydendrum arboreum (.112), Quercus coccinea (.109), Pinus rigida (.023)

T2 Liriodendron tulipifera (.330), Quercus prinus (.178), Pinus resinosa (.131), Oxydendrum arboreum (.092), 
Pinus virginiana (.084)*, Quercus coccinea (.080), Pinus banksiana (.066), Pinus rigida (.024)

9. Red maple T1 Acer rubrum (.964), Salix spp. (.036)

T2 Acer rubrum (.959), Salix spp. (.041)

10. Poplar–aspen T1 Populus tremuloides (.804), Populus balsamifera (.105), Quercus macrocarpa (.091),

T2 Populus tremuloides (.715), Quercus macrocarpa (.121), Populus balsamifera (.069), Betula papyrifera (.056)*, 
Fraxinus spp. (.038)*

11. Southern lowland T1 Pinus elliottii (.539), Magnolia virginiana (.114), Taxodium ascendens (.101), Pinus serotina (.078), Taxodium 
distichum (.051), Persea borbonia (.049), Nyssa aquatica (.041), Gordonia lasianthus (.023)

T2 Quercus nigra (.302)*, Pinus elliottii (.279), Quercus laurifolia (.108)*, Magnolia virginiana (.075), Taxodium 
ascendens (.049), Taxodium distichum (.047), Quercus virginiana (.042)*, Persea borbonia (.030), Nyssa 
aquatica (.028), Gordonia lasianthus (.020), Pinus serotina (.019)

12. Spruce–tamarack T1 Picea mariana (.383), Larix laricina (.213), Carpinus caroliniana (.212), Ilex opaca (.102), Quercus michauxii 
(.025), Betula populifolia (.024), Quercus palustris (.020)

T2 Picea mariana (.274), Carpinus caroliniana (.220), Larix laricina (.195), Ilex opaca (.137), Quercus pagoda  
(.072)*, Betula populifolia (.026), Quercus palustris (.023), Quercus shumardii (.021)*, Quercus michauxii  
(.020)

Note: Species are included only if their proportion is > 1/nspecies (> 1/85). The species proportion in each community is given in parentheses. Asterisks 
indicate species that were present in the community in one sampling period but not the other.
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via an iterative approach identified a candidate set of models with 
values of k, the number of communities in the model, ranging from 
12 to 43 (out of possible k values ranging from two to 50). However, 
when we applied an ecologically based metric, the number of species 
with a proportion in the community > 1/nspecies (> 1/85), the k = 12 
community model was chosen because it did not include any com-
munities composed of only one species. Models with varying inputs 
(relative density, relative basal area, and importance value for sap-
lings, trees and all stems) generally agreed in species composition 
and were not significantly different from one another (Mantel test 
correlation r > .99, p < .01 for all tests). Therefore, results shown are 
based on the model including the importance value of all stems; it 
was the most generalized community, incorporating density, basal 
area and all size classes.

Given that the LDA model does not incorporate spatial con-
straints on the communities, the clustering of communities in a spe-
cific region would indicate that the model is generating meaningful 
communities. Indeed, the observed communities were centred on a 
specific geographical region (Figure 1; Supporting Information Figure 
S3). Likewise, we used the species composition of each community 
to assess whether it aligned with previous knowledge of the forest 

communities in these different regions. We found similarities be-
tween our communities and those from the studies by Braun (1950), 
Dyer (2006) and Costanza et al. (2017) (see Discussion), indicating 
the that LDA model was identifying meaningful ecological communi-
ties. The spatial and ecological consistency of the communities indi-
cated that further analysis using communities as a unit was justified.

3.2 | Community compositional shift between 
T1 and T2

Generally, communities were identifiably similar between T1 and T2, 
and correlation tests revealed a significant correlation between T1 
and T2 species composition for all communities (r = .67–.99, p < .001 
for all tests). Three main community groups were observed in terms 
of their compositional shifts, although the groupings were not mu-
tually exclusive. The first group of communities (Communities 5, 
oak–hickory; 6, beech–maple; 8, yellow poplar–oak; 9, red maple; 10, 
poplar–aspen; and 12, spruce–tamarack) remained stable through-
out the study period, with only minor shifts in species composition 
or gain/loss of minor component species (Table 1). For example, 

F I G U R E  1   Maps of 12 regional forest communities across the eastern USA. Hexagon sampling units are mapped according to the 
community with the highest proportion in each hexagon at (a) T1 and (b) T2. Non-forested areas are masked out by the 2011 National 
Land Cover Database for visualization purposes only (https://www.mrlc.gov/data). Community 12 (spruce–tamarack) was the dominant 
community in only eight hexagons at T1 and 11 hexagons at T2 and therefore does not show clearly on the maps. Maps are projected to 
the Albers equal-area conic projection. The species composition of the 12 communities can be found in Table 1, and a map showing the 
difference between T1 and T2 can be found in Figure 5. GIS shapefiles of these maps are available for download from https://www.doi.
org/10.4231/GCE5-ZY59

https://www.mrlc.gov/data
https://www.doi.org/10.4231/GCE5-ZY59
https://www.doi.org/10.4231/GCE5-ZY59
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Community 6 (beech–maple) lost only the bottom two species in 
the community and had no changes in dominance, and Community 9 
(red maple) had very minor changes in the relative proportion of 
red maple (Acer rubrum) versus willow species (Salix species). The 
second group of communities (Communities 2, central woodlot; 7, 
pine–sweetgum; and 11, southern lowland) gained or lost major spe-
cies over time. Community 11 (southern lowland) gained oak spe-
cies (Quercus nigra, Quercus laurifolia and Quercus virginiana) from 
Community 7 (pine–sweetgum), and Community 2 (central woodlot) 
lost Virginia pine (Pinus virginiana), the species with the second high-
est proportion in Community 2 at T1. All other communities except 
Communities 1 (cherry–oak) and 9 (red maple) gained or lost spe-
cies; however, these gains and losses were generally a minor com-
ponent of the community. The third community group (Communities 
1, cherry–oak; 4, pine–sweetgum; and 11, southern lowland) shifted 
the dominant species in the community. For example, Community 1 
(cherry–oak) switched from being dominated by red oak (Quercus 
rubra) to being dominated by cherry species (Prunus species), and 
Community 4 (pine–tupelo–oak) switched from being dominated 
by shortleaf pine (Pinus echinata) to being dominated by black gum 
(Nyssa sylvatica). The most dramatic shift in species composition oc-
curred in Community 11 (southern lowland), which switched from 
being dominated by slash pine (Pinus elliottii) to a new species in the 
community, water oak (Quercus nigra).

3.3 | Shifts in spatial distributions of communities

We found that there was large variability in the distance that com-
munities shifted over the last three decades. Compared with the 

species level (i.e., observed shifts from Fei et al., 2017), community-
level shifts in spatial distribution were relatively short, ranging from 
3.6 to 24.6 km/decade, with a median of 8.0 km/decade (Table 2). All 
communities had significant shift distances when tested with ran-
domization tests (Figure 2a). The forest community with the larg-
est spatial shift, Community 11 (southern lowland), was centred in 
the SPHR. This community shifted its centroid 24.6 km/decade to 
the southwest (Benjamini–Hochberg-adjusted p-value, PBH < .001). 
Communities 2 (central woodlot), 3 (conifer–birch) and 4 (pine– 
tupelo–oak) also had relatively large shift distances (24.2, 21.2 and 
21.5 km/decade, respectively, PBH < .001 for all three communi-
ties; Table 2). The community with the smallest shift, Community 1 
(cherry–oak) had a marginally significant south-eastward shift 
(3.6 km/decade, PBH = .045).

The direction of shift also varied across the 12 communities 
(Table 2; Figure 2b). Half of the communities shifted eastward (five 
significant: Communities 1, cherry–oak, 2.8 km/decade, PBH = .035; 
3, conifer–birch, 21.2 km/decade, PBH < .001; 4, pine–tupelo–
oak, 11.3 km/decade, PBH < .001; 5, oak–hickory, 2.5 km/decade, 
PBH = .035; and 8, yellow poplar–oak, 3.7 km/decade, PBH = .015) 
and the other half shifted westward (five significant: Communities 
2, central woodlot, 23.2 km/decade, PBH < .001; 6, beech–maple, 
11.4 km/decade, PBH < .001; 9, red maple, 6.7 km/decade, PBH < .001; 
11, southern lowland, 12.2 km/decade, PBH < .001; and 12, spruce–
tamarack, 6.4 km/decade, PBH < .001). A total of five communities 
shifted northward (four significant: Communities 2, central woodlot, 
6.9 km/decade, PBH = .002; 4, pine–tupelo–oak, 18.3 km/decade, 
PBH < .001; 5, oak–hickory, 5.8 km/decade, PBH < .001; and 7, pine–
sweetgum, 8.6 km/decade, PBH < .001), and seven communities 
shifted southward (four significant: Communities 6, beech–maple, 

TA B L E  2   Shifts in forest communities over the last three decades

Community
Latitude shift 
(km/decade)

Longitude shift 
(km/decade)

Observed 
direction

Predicted 
direction

Distance shift 
(km/decade)

Area change  
(km2/decade)

1. Cherry–oak −2.3 2.8* South-east North-west 3.6* 4,578* (+7.1%)

2. Central woodlot 6.9** −23.2*** North-west North-east 24.2*** 175 (+.2%)

3. Conifer–birch .2 21.2*** North-east North-west 21.2*** 1,259 (+2.5%)

4. Pine–tupelo–oak 18.3*** 11.3*** North-east North-east 21.5*** −11506*** (−18.5%)

5. Oak–hickory 5.8*** 2.5* North-east North-east 6.3*** −17089*** (−15.6%)

6. Beech–maple −6.9*** −11.4*** South-west North-east 13.3*** −205 (−.2%)

7. Pine–sweetgum 8.6*** −3.1 North-west North-east 9.1*** 1,830 (+1.8%)

8. Yellow poplar–oak −4.2** 3.7* South-east South-west 5.6*** 2,878 (+5.0%)

9. Red maple −1.7 −6.7*** South-west North-west 6.9*** 3,423* (+5.1%)

10. Poplar–aspen −6.4*** +0.0 South-east North-east 6.4*** −2005 (−4.7%)

11. Southern lowland −21.4*** −12.2*** South-west South-west 24.6*** 13,759*** (+26.7%)

12. Spruce–tamarack −2.3 −6.4*** South-west North-west 6.8*** 2,903** (+7.7%)

Note: Shifts were measured by the movement of the community centroid and changes in community spatial coverage. Positive values of latitude 
and longitude shift represent northward and eastward movement, respectively; conversely, negative values represent southward and westward 
movement. The predicted direction was based on expected shifts owing to climate change (communities shown in bold had the same observed and 
predicted direction of shift). The percentage change in the area is in parentheses. Asterisks indicate significant Benjamini–Hochberg-adjusted p-
values (PBH) when tested by randomization tests.
*PBH ≤ .05; **PBH ≤ .01; ***PBH ≤ .001. 
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6.9 km/decade, PBH < .001; 8, yellow poplar–oak, 4.2 km/decade, 
PBH = .009; 10, poplar–aspen, 6.4 km/decade, PBH < .001; and 11, 
southern lowland, 21.4 km/decade, PBH < .001).

Additionally, eight communities expanded their area of cov-
erage, and four communities contracted their area of coverage 
(Table 2). Of the eight expansions, four communities gained spatial 

F I G U R E  2   Centroid shift of forest communities. (a) Frequency distribution of randomized centroid shifts (blue area) and observed shift 
distance (dashed lines). The proportion of the frequency distribution greater than the observed shift distance is in red. Asterisks indicate 
significant Benjamini–Hochberg adjusted p-values (PBH): *PBH ≤ .05 and ***PBH ≤ .001. (b) Direction and distance of forest community shifts. 
Arrow colours represent the significance of shifts in distribution. The map is projected to the Albers equal-area conic projection, and the 
inset map shows the location displayed relative to the study area (white areas included for display purposes only)
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coverage significantly (Communities 1, cherry–oak, 4,578 km2/de-
cade, PBH = .03; 9, red maple, 3,423 km2/decade, PBH = .026; 11, 
southern lowland, 13,759 km2/decade, PBH < .001; and 12, spruce–
tamarack, 2,903 km2/decade, PBH = .003). Of the four contractions, 
two communities lost spatial coverage significantly (Communities 
4, pine–tupelo–oak, −11,506 km2/decade, PBH < .001; and 5, oak–
hickory, −17,089 km2/decade, PBH < .001; Table 2). The largest 
increase in community area was in Community 11 (southern low-
land), which increased by 13,759 km2/decade, a 26.7% expansion in 
area (PBH < .001). The largest decrease in area was in Community 5 
(oak–hickory), which decreased by 17,089 km2/decade, a 15.6% 
contraction in area (PBH < .001). Community 2 (central woodlot) had 
the smallest change in area, increasing by 175 km2/decade (0.2% 

expansion), and Community 6 (beech–maple) had a similar decrease 
in area (−205 km2/decade, 0.2% contraction).

Observed T2 locations of communities were predicted well by 
climate conditions during the study period (Supporting Information 
Figure S4a,b), but shifts in the communities were smaller than pre-
dicted by climate change except for Community 6 (beech–maple; 
Figure 3). Climate-predicted longitude was moderately associ-
ated with observed longitude of the 12 communities (R2 = 0.278), 
and the slope of the association was not different from the 1:1 
line (slope = 1.14, p = .826; Supporting Information Figure S4a). 
However, the relationship between observed and predicted latitude 
was very strong (R2 = 0.96) and significantly smaller than the 1:1 line 
(slope = 0.84, p < .001; Figure S4b), indicating that the predicted 

F I G U R E  3   Predicted versus observed shifts in forest communities. Black dots represent community centroids at T1, and arrows 
represent climate-predicted (red) and observed (black) shifts in the community centroid. All predicted shifts are larger than the observed 
shifts except for Community 6 (beech–maple). The inset map indicates the location of community centroids within the study area. White 
areas outside of the study area are included for display purposes only. The map is projected to the Albers equal-area conic projection. See 
Figure 2 for a significance of observed community shifts
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locations are generally farther from the centre of the study region 
than observed. In contrast, there were very low R2 values between 
predicted and observed shifts in the distance in latitude and longi-
tude, with slopes close to zero and far from the 1:1 line (R2 = 0.02 
and 0.05, and slope = 0.047 and −0.06 for latitude and longitude, re-
spectively, Figure 3; Supporting Information Figure S4c,d). The map 
depicting the observed and predicted shifts (Figure 3) showed many 
communities shifting in directions different from those predicted by 
climate change, and only three communities had the same observed 
and predicted direction of shift (Table 2).

3.4 | Across-community responses to 
climatic and non-climatic factors

We assessed changes in all communities collectively across the 
study region to identify where forest communities are changing 
most rapidly and compare those areas with a variety of climatic and 
non-climatic factors. Areas in the southern portion of the study 
region tended to have the largest changes in community composi-
tion over time (i.e., the largest JSDT1,T2; Figure 4a). Our GLMMs 
with climatic and non-climatic predictors of JSDT1,T2 showed that 
eight PRISM-derived historical climatic conditions were significant 

predictors of community change over time (TAP, PSD, MAT, TMAX, 
TMIN, TRANGE, TMAXSD and TMINSD; PBH < .001 for all 
eight), but PDSI exhibited only marginal significance (PBH = .047; 
Figure 4b). Of the nine climate variables, only changes in tempera-
ture variability (TRANGE, TMINSD and TMAXSD; PBH < .001 for 
all three) and MAT (PBH = .025) were significant (Figure 4b). Of the 
non-climatic variables we tested, only basal area (BA; a proxy for 
forest developmental stage) was significant (PBH < .001 for initial 
BA and PBH = .004 for change in BA). Areas that had forests that 
were initially older or that had increases in basal area (forests that 
got older progressively throughout the study period) tended to be 
more stable over time.

About one-quarter of hexagons showed turnover in the domi-
nant community type (24.6%, 446 out of 1813 hexagons; Figure 5), 
although correlation tests revealed that the overall community com-
position was consistent between T1 and T2 across all 12 commu-
nities (r = .80–.97, p < .001 for all tests). The map of change in the 
dominant community between T1 and T2 (Figure 5a) showed that 
areas changing from one community to another tended to occur 
along the boundaries of the T1 communities (e.g., along the northern 
and southern edges of Community 7, pine–sweetgum, in the SPHR, 
or the boundary between Communities 8, yellow poplar–oak, and 5, 
oak–hickory, in the CHR). Hexagons dominated by Communities 3 

F I G U R E  4   Changes in forest communities and associated factors. (a) Response variable from generalized linear mixed-effects models 
(GLMMs): change in community composition measured by Jensen–Shannon distance in k = 12-dimensional community space between T1 
and T2 (JSDT1,T2). Areas in red have greater dissimilarity in community composition between T1 and T2. Hexagons with black borders were 
removed from the analysis because of missing data. The map is projected to the Albers equal-area conic projection. (b) Predictors of change 
in community composition over the last three decades. Dots represent standardized slope coefficient estimates from GLMMs with a beta 
distribution and logit link function. Shading indicates individual models. All models except fire frequency and nitrogen deposition [LOG(FIRE) 
and NDEP, respectively] contained the historical climate conditions (indicated by “T1”) and change between the historical and study period 
conditions (indicated by “Δ”). Bars represent 95% confidence intervals, and those that cross the vertical line at zero are considered non-
significant. Abbreviations: BA = basal area; LOG(FIRE) = fire frequency; MAT = mean annual temperature; NDEP = nitrogen deposition; 
PDSI = Palmer drought severity index; PSD = SD of monthly precipitation; TAP = total annual precipitation; TMAX = annual maximum 
temperature; TMAXSD = SD of maximum monthly temperature; TMIN = annual minimum temperature; TMINSD = SD of minimum monthly 
temperature; TRANGE = annual temperature range

(a) (b)
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(conifer–birch), 7 (pine–sweetgum), 11 (southern lowland) and 12 
(spruce–tamarack) at T1 were most frequently classified under the 
same dominant community at T2 (86.2, 90.0, 91.5 and 100.0%, re-
spectively; Figure 5b).

4  | DISCUSSION

We showed that the LDA model works for identifying meaningful 
communities of co-occurring species at a regional scale. In general, 
the 12 communities aligned with previous studies of forest com-
munities. The boundaries of our regional forest community maps 
(Figure 1) were similar to those found by Dyer (2006) and Braun 
(1950). Likewise, the species composition and distribution of some 
of our communities aligned closely with those identified by Costanza 
et al. (2017). For example, the balsam fir–quaking aspen community 
identified by Costanza et al. (2017) is similar in species composition 
and spatial distribution to Community 3 (conifer–birch). A benefit 
of the LDA model is that it provides a relative frequency of each 
forest community within each sample versus other methods that 
assign a single dominant community type to each sample (Valle 
et al., 2014). This allows for the analysis of community dynamics 
across the entire study area, including areas where a community is 
a minor component (e.g., community centroids were weighted by 
the community proportion in all hexagons, not only in the hexagons 
where it was dominant). However, our maps in Figure 1 and analysis 
of change in the dominant community (Figure 5) indicate only the 
community with the highest proportion in each aggregated hexa-
gon unit; that is, many hexagons contained multiple community 
types (median number of communities with proportion > 1/12 in 
each hexagon = 4; minimum = 1; maximum = 8).

Given the wide range of responses to climate change at the spe-
cies level (e.g., Fei et al., 2017; Woodall et al., 2009; Zhu et al., 2012), 
we expected to find communities responding to climate change 
with different spatial dynamics. For example, we found a wide 
range of spatial shifts, such as the southern lowland community 
(Community 11), which had a large southwest shift and large increase 
in area, versus Communities 1 (cherry–oak) and 8 (yellow poplar–
oak), which had highly stable spatial distributions (both showing 
marginally significant south-eastern shifts and small increases in 
the area). The dramatic shifts in Community 11 are likely to be at-
tributable to increases in the slash pine (Pinus elliottii) component 
of this community in this region (Fox, Jokela, & Allen, 2007; Knott, 
Desprez, Oswalt, & Fei, 2019) and to the addition of Quercus species 
over the study period. In contrast, Communities 1 (cherry–oak) and 
8 (yellow poplar–oak) have contrasting mechanisms for stability: the 
cherry–oak community is most commonly found as a mid- to late 
successional component of forests in the CHR and NHR versus the 
vellow poplar–oak community, which is dominated by yellow poplar 
(Liriodendron tulipifera), a disturbance-dependent species that can 
grow in a wide range of conditions and create a stable community, 
where it dominates multi-tree canopy openings (Burns & Honkala, 
1990).

F I G U R E  5   Change in dominant forest communities between T1 
and T2. (a) Hexagons with red borders indicate where the dominant 
community at T2 differs from the dominant community at T1. 
Hexagon outer colour represents the dominant community at T1 
and the inner point colour represents the dominant community at 
T2. The map is projected to the Albers equal-area conic projection. 
(b) Transition matrix between T1 and T2. Each box contains the 
proportion of hexagons with the dominant community at T1 (x axis) 
transitioning to the dominant community at T2 (y axis). The number 
of hexagons in each transition is in parentheses. Colours represent 
higher proportions (red = low, blue = high). A total of 446 out of 
1813 hexagons (24.6%) changed dominance between T1 and T2

(a)

(b)



     |  13KNOTT eT al.

In addition to variability in the spatial dynamics of the com-
munities, we also expected to find variability in the number of 
changes to the species composition of the communities. Again, 
Community 11 (southern lowland) was most dynamic, gaining oak 
species (Quercus nigra, Quercus laurifolia and Quercus virginiana) at 
T2 from Community 7 (pine–sweetgum). In contrast, Communities 
6 (beech–maple) and 9 (red maple) were highly stable in species 
composition. Although they both had significant spatial shifts (in-
deed, Community 6 was the only community that shifted farther 
than climate predicted), the stability of their species composition 
is not surprising given that beech–maple forests are considered to 
be a climax community (Braun, 1950), and red maple (Acer rubrum) 
has increased consistently over recent decades (Fei & Steiner, 
2007).

The strongest predictors of community change over time were 
related to historical climatic conditions and changes in seasonal tem-
perature variability. In general, forests that had the greatest changes 
in community composition tended to have a wetter and warmer his-
torical climate, higher precipitation variability or lower seasonal tem-
perature variability (Figure 4b). In addition, forests that decreased 
in seasonal temperature variability over the study period tended to 
have larger changes over time. Measures of change in precipitation 
were not significant in relationship to community spatial shifts de-
spite species-level migration in response to change in precipitation 
(Fei et al., 2017), and measures of temperature change (MAT) were 
less significant than measures of change in temperature variability. 
The nature of the relationship between seasonal temperature vari-
ability and JSDT1,T2 (areas with larger climate variability and areas 
that increased in climate variability led to more stable communities) 
generally supports the hypothesis that fluctuations in tempera-
ture can act as stabilizing processes in vegetation dynamics (Lloret, 
Escudero, Iriondo, Martínez-Vilalta, & Valladares, 2012).

Although the non-climatic variables we tested play an important 
role in local forest dynamics, they generally lack strong relationships 
with community change at the regional scale (the largest of the three 
scales studied in this research), which aligns with the view of Ricklefs 
(1987) that regional-scale processes are more important than lo-
cal-scale processes. Fire frequency is often considered to be an im-
portant disturbance metric in forest ecosystems, especially at the 
stand level (Briggs, Knapp, & Brock, 2002; Hutchinson, Sutherland, & 
Yaussy, 2005; Nowacki & Abrams, 2008), but was found to have little 
effect on the overall changes to forest communities at the regional 
scale (Figure 4b). In addition, nitrogen deposition was found to have a 
non-significant effect on forest community change despite the regu-
latory influence of the nitrogen and carbon cycles (and the mycorrhi-
zal communities that influence these cycles) in forest ecosystems (Jo 
et al., 2019; Lovett, Weathers, & Arthur, 2002; Pellegrini et al., 2017). 
Areas with an initially higher total basal area or that gained basal area, 
generally associated with older forests, were found to be more stable 
over time, consistent with comparisons of old-growth forests versus 
younger forests (Fralish, Crooks, Chambers, & Harty, 1991); however, 
the relationship was weaker than the effect of climate.

Previous studies at the local scale have shown dramatic with-
in-site turnover in forest communities as a response to climate 
change (Feeley, Davies, Perez, Hubbell, & Foster, 2011; Lebrija-Trejos, 
Pérez-García, Meave, Bongers, & Poorter, 2010; Ozier, Groninger, 
& Ruffner, 2006). At the regional scale, c. 25% of the study region 
experienced turnover in the dominant community (Figure 5), with 
some communities losing dominance at higher rates than other com-
munities. This trend was also indicated by the significant community 
shift distances but lack of directionality; as one community moves 
out of an area, another fills in behind, leading to a lack of consistent 
directional shifts.

The rate of change in communities is likely to be lagging be-
hind climate change. Although we showed many dramatic changes 
in species composition, spatial distribution and turnover in the 
dominant community type, climate change outpaced the rate of 
community migration (Figure 3). However, this is not surprising 
because there are expected to be significant time lags between 
climate change and community-level responses (Bertrand et al., 
2011). It is possible that communities have not yet accumulated 
enough species-level responses (e.g., increased mortality in un-
suitable areas or differential recruitment rates across the region) 
to produce a community-wide response to climate change, es-
pecially throughout the relatively short study period. Our study 
encompassed three decades of forest inventory data, but a more 
direct response to climate change might emerge when considering 
a longer time interval.

A second reason for climate lags is the resilience of complex sys-
tems. Generally, with increased complexity, there is a greater resilience 
to stressors (Loreau et al., 2001; Symstad et al., 1998). With these com-
plex communities composed of multiple species, it is likely that species 
with large responses are balanced out by others with small responses, 
and the diversity and plasticity of traits within a community can allow 
it to compensate for climate change. Additionally, climate effects may 
be masked out by other unaccounted factors, such as trait variability 
(e.g., variation in the dispersal ability of the component species), inva-
sive species and disturbances (such as deer browse and change in land 
use) that affect communities differentially (Côté, Rooney, Tremblay, 
Dussault, & Waller, 2004; Jo, Potter, Domke, & Fei, 2018; Knott et al., 
2019; Oswalt et al., 2015).

There are a few caveats of our study that need to be consid-
ered, especially when using the results of our study for manage-
ment and extrapolation to other regions. First, our results are 
aggregated to a larger scale (i.e., the 1,452 km2 hexagon tessella-
tion) than the scale at which most management occurs. This is im-
portant for managers who intend to use our results as an indicator 
of changes beyond their local plot-level observations. Managers 
should consider the dynamics of the various regional communities 
represented in their forests when making decisions, but they also 
should recognize that the trends in regional forest communities 
might not always reflect the variability in local-scale forest dy-
namics. Second, it is also important to consider the location of our 
study. Forest communities near the coast (hard boundaries) might 
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tend to shift inland, and forest communities along the soft bound-
aries of our study area (i.e., Canada and the central USA) might 
have shifted into these regions but are not observable in the FIA 
data used in this study. Likewise, our analysis of climate-predicted 
shifts was limited to climate data within the study region bound-
aries, and it is likely that some communities (especially those near 
the Canadian border) will find a suitable climate outside the study 
area. However, many of the northern communities did not move 
as far north as predicted by climate change even when limited to 
the study area; therefore, extending our modelling approach to 
include potentially suitable climate in Canada might further in-
crease the divergence between observed and predicted shifts. 
Finally, although we found many significant shifts in eastern U.S. 
communities, communities in other locations (e.g., in other parts 
of North America or on other continents) might be more or less 
stable than those found in our study area; however, to our knowl-
edge, there have not been studies similar to ours in other areas of 
North America or globally.

The consistently significant shifts in forest communities can 
serve as a warning sign of the continued impact of anthropogenic 
activities. Although we detected changes in forest communities 
within three decades that surpass rates of change observed during 
times of historical climate change (e.g., century to millennium time-
scales of post-glaciation migration; Davis, 1983), climate change is 
currently outpacing the rate of community migration. Forest com-
munities not only migrated shorter distances than climate change 
predicted, but also shifted in the direction opposite to climate 
change. This is alarming in that forest communities are unable to 
keep up with either the pace or the direction of climate change. 
Future analyses incorporating individual species traits within a 
community can help to elucidate the susceptibility of certain eco-
system functions to climate change. In addition, understanding 
other potential threats to forest communities, such as invasive 
species, specific management practices and other climate-related 
factors, can help to quantify further the sustainability of forest 
ecosystems and the services they provide. Nevertheless, our anal-
ysis presents one of the first attempts at quantification of the re-
distribution of regional forest communities, and our results can 
aid in the monitoring and management of forest ecosystems in a 
rapidly changing global environment.
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