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What is “science of information”?

Communication: information in action

knowledge of communication of knowledge 

communication







A Mathematical Theory of Communication

Fig. 1 —Schematic diagram of a general communication system.



A Mathematical Theory of Communication

• What is information? How can we measure information?

• How do we mathematically model a noisy channel?



C.E. Shannon (1916-2001)

• Born on April 30, 1916 in Northern Michigan.

• Bachelor’s degrees in Electrical Engineering and Mathematics from 
University of Michigan, 1936.

• Joins MIT as a research assistant to work on a differential analyzer 
under the supervision of Professor Vannevar Bush.

• His MS thesis “A Symbolic Analysis of Relay and Switching Circuits” 
forms the foundation of digital circuit design and the modern 
computer, 1937.

• Completes PhD Thesis “An Algebra for Theoretical Genetics” in 1940.

• Bell Labs, 1941-1956.

• Faculty at MIT, 1956-1978.





How do we measure information?

Suppose you ask a question and get an answer.  How do you tell if the 
answer involves a small amount or large amount of information?

• Depends on the semantics and context.

• Depends on the length of the answer.

• Depends on how many bits we need to represent/store the answer.

Shannon: Information is the ability to distinguish 
reliably among possible alternatives.



How do we measure information?

M: number of possibilities

• If M is small, the amount of information in the message/answer is 
small. 

Ex. Did you travel abroad over the summer? Yes/No

• If M is large, the amount of information in the message/answer is 
large. 

Ex. Which country did you travel to over the summer?  ~200 



How do we measure information?

Take the logarithm to make information additive:

Entropy: 𝑯 = log𝟐𝑴

• If M=1, H=0 bits.

• If M=2, H=1 bits.

• If we have two binary messages, M=4, H=2 bits.

Entropy can be also viewed as a measure of uncertainty: 
it represents our uncertainty about the message before we receive it.



Entropy and Representation

n ≥ H

The number of bits n we need to represent a message:

Ex: How about when M=5? 𝐻 = log2 5 = 2.32

Block Coding: Consider encoding blocks of messages generated by this
source:
• Blocks of 2: 2.5 bits per message.
• Blocks of 3: 7/3=2.33 bits per message



Entropy and Representation

Conclusion:
The entropy H of a source equals the minimum 
number of bits required to represent a message 

from this source.



Refining the definitio created equalRefining the definition of entropy

Very High Probability Low Probability



The surprise factor

Assume we have a source with M possible outcomes 𝑘 = 1,…𝑀 with 
corresponding probabilities 𝑝(1), … 𝑝(𝑀). Surprise of outcome 𝑘 can 
be defined as

𝑠 𝑘 = log2
1

𝑝(𝑘)

Fire Alarm:

𝑝(𝑘) 𝑠(𝑘)

No Fire 0.999 0.014

Fire 0.001 9.97



A new definition of entropy

Entropy is the average surprise:

𝐻 = ෍

𝑘=1

𝑀

𝑝 𝑘 log2
1

𝑝(𝑘)

• Coincides with our earlier definition of entropy when messages are equally likely.

• Fire alarm example:

• More generally:  

𝐻 𝐹𝑖𝑟𝑒 𝐴𝑙𝑎𝑟𝑚 = 0.024 bits

𝐻 ≤ log2𝑀



Shannon’s First Fundamental Theorem

Source Coding Theorem: The entropy H(X) of a 
source (the average surprise) equals the minimum 
average number of bits necessary to code messages 
from that source. 



A Mathematical Theory of Communication

• What is information? How can we measure information?

• How do we mathematically model a noisy channel?



Communication Channel

The ordinary telegraph is like a very long cat. You pull the tail in New 
York, and it meows in Los Angeles. The wireless is the same, only 
without the cat.

Albert Eistein



Channel Model

X Y X Y

For each x in X, specify p(y|x) for all y in Y



Examples

Binary Symmetric Channel (E=0.1)        Binary Erasure Channel (E=0.1)
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Can you learn half a bit about a bit?

Assume we transmit a bit X (equally likely to be 0 or 1) over the binary 
symmetric channel, how much information does the receiver get about 
X?

• H(X)=1 bit

• 𝐻 𝑋 𝑌 = 0.9 log2
1

0.9
+ 0.1 log2

1

0.1
=0.469 bits

• 𝐼(𝑋; 𝑌) = 1 − 0.469 = 0.531 bits

How about if we communicate X over the binary erasure channel?

• H(X|Y)=0.1 bits, I(X;Y)=0.9 bits.



Learning as a communication channel

A final exam contains 100 Yes/No questions:

Which student knows more?

• Student A gets the correct answer 90% of the time and marks the 
wrong answer 10% of the time.

• Student B knows the correct answer also 90% of the time; but when 
she knows the answer, she invariably answers correctly, if she is not 
sure, she sure leaves the question blank.

StudentOriginal Facts Exam Answers



Can we communicate reliably over noisy 
channels?
• If we communicate a bit over the binary symmetric channel (e=0.1), 

Probability of Error=0.1
• Repetition coding: 

Probability of Error=0.028

Probability of Error=0.0086

000 111

00000 11111



Shannon’s Second Fundamental Theorem

Channel Coding Theorem: There exists a transmitter and 
a receiver that make it possible to send C bits per second 
while keeping the error probability as small as desired. 
Conversely, if we try to send at a rate higher than C bits per 
second, then errors are inevitable. The threshold C is called 
the capacity of the channel and is given by

C= max I(X;Y)

Binary Symmetric Channel (e=0.1): C=0.531 bits/channel use.
Binary Erasure Channel (e=0.1): C=0.9 bits/channel use.



Why is block coding good?



Why is block coding good?



Why is block coding good?

LAW OF LARGE NUMBERS



Complexity of Block Coding

• Assume 𝑛 = 100,𝑀 = 2100 is approximately 1030

• Using this approximation, a VLSI chip that makes 109 inner products 
per second takes 1021 seconds to check all possibilities. This is 
roughly 4 x 1013 years. 

• The universe is “only” roughly 2 x 1010 years old!



A simple convolutional code

Rate=0.5 bits/channel use Probability of error=0.07



The bit as the universal information currency

So far we talked about

• how we can represent sources by a binary sequence.

• how we can reliably communicate long sequences of bits over noisy  
channels.

Information Sources:

• Discrete Sources: produce symbols taking values in a discrete set.

• Continuous Alphabet Sources: produce symbols taking a continuum of 
values.

• Continuous-Time Sources: produce continuous-time signals



Shannon’s Third Fundamental Theorem

• Source Channel Separation Theorem: If a source can be transmitted over a 
channel in any way at all, it can be transmitted using a binary interface between 
the source and the channel. [More generally, if a source can be transmitted over 
a channel with certain fidelity, then it can be transmitted with the same fidelity 
using a binary interface between the source and the channel.]

Bits have become the universal information currency as result of:
• the source channel/separation theorem.
• electronic circuits becoming more and more digital.
• a standardized binary interface between the source and the channel 

simplifies implementation and understanding.



From 1948 to 2018



Analog vs Digital Communication

Analog Communication:

• The message to be communicated is one of a continuum of 
possibilities.

• Can never fully remove the effects of noise.

Digital Communication:

• The message to be communicated is one of a finite set of possible

choices.

• Can remove the effects of noise induced by the channel.


