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Dynamics	on	networks

• Large	literature	on	structure	of	networks
• Also	lots	of	work	on	how	structure	informs	dynamics	on	networks

• Less	well	studied:	how	do	node	dynamics	change	effective	network	structure?	
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• Also	lots	of	work	on	how	structure	informs	dynamics	on	networks

• Less	well	studied:	how	do	node	dynamics	change	effective	network	structure?	

• Generalized	inverse	of	the	graph	Laplacian:	absorption	inverse
• Absorbing	random	walks
• Integrating	structure	and	dynamics
• Structural	metrics:	distance,	clustering,	centrality
• Implications	for	disease	dynamics	on	networks



Disease	on	community	networks

“It	has	proven	difficult	to	obtain	analytical	results	for	
metapopulation models.”		--Riley	et	al,	2015.	



Motivating	model	framework

• Strongly	connected,	weighted,	directed	graph	G

• Vertices:	low	dimensional	system	of	ODEs	(“communities”)

• Mobility	network	(adjacency	matrix	A)



Vertex dynamics
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Pathogen removal rate di +mi + ↵i (“absorption”)



R0 and	the	next	generation	matrix

• Basic	reproduction	number	for	more	complicated	settings:	next	generation	matrix
• Diekmann,	Heesterbeek,	and	Metz	(1990)	– general	setting	(operator)
• Van	den	Driessche and	Watmough (2002)	– compartmental	models	(matrix)

F – “fecundity” matrix (new infections)

V – “transfer” matrix

V �1
– “fundamental matrix”
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R0 =	1	threshold	for	disease	invasion

V �1
ij – expected time in i, starting from j



Next	generation	matrix

F – “fecundity” matrix (new infections)

V – “transfer” matrix

V �1
– “fundamental matrix”

Theorem (van	den	Driessche and	Watmough):	
R0 =	1	threshold	for	disease	invasion

V �1
ij – expected time in i, starting from j

Hard	to	analyze!



Domain	R0 for	community	networks

İ = DSD�I � (L+D)I,
V = L+D

L = W �A

L – graph Laplacian



Laplacians	and	graph	structure

• Un-normalized	Laplacian	(L)
• Normalized	Laplacian	(W-1/2LW-1/2)
• Random	walk	Laplacian	(W-1L)

• Encoding	of	structural	information!
• Number	of	connected	components
• Spectral	gap,	Cheeger’s inequality
• Matrix	tree	theorem
• Community	detection,	centrality,	more…



Matrix	Tree	Theorem

Let (G, A) be a weighted, directed graph, and let L be the Laplacian matrix

of (G, A). Let ckk denote the (k, k) cofactor of L. Then the cofactors of L are

related to the rooted spanning trees of G by the following:

ckk =

X

T 2Tk

Y

(j,i)2E(T )

aij , (1)

where Tk is the set of all spanning in-trees rooted at vertex k, E(T ) is the arc

set of rooted spanning in-tree T , and aij the weight of the arc from j to i.



Matrix	Tree	Theorem

Let (G, A) be a weighted, directed graph, and let L be the Laplacian matrix

of (G, A). Let ckk denote the (k, k) cofactor of L. Then the cofactors of L are

related to the rooted spanning trees of G by the following:

ckk =

X

T 2Tk

Y

(j,i)2E(T )

aij , (1)

where Tk is the set of all spanning in-trees rooted at vertex k, E(T ) is the arc

set of rooted spanning in-tree T , and aij the weight of the arc from j to i.

Corollary: ker L	can	be	expressed	in	terms	of	spanning	trees	of	G

kerL = u
ui = normalized sum of weights of spanning trees rooted at i



Laurent	series	expansion	for	R0

Langenhop	(1971):	Laurent	series	for	perturbed	singular	matrices

Fundamental	matrix	as	perturbation	of	Laplacian:
Scaling:

Time	scales	of	absorption	to	movement

X�1 – spanning trees, averaging

X0 – generalization of the group inverse; higher order structure

V = L+ "D



Singular	term	X-1:	averaging	on	the	network

ui – weight of spanning trees rooted at i
di – absorption rate at i

uidi

d̄
– probability measure combining structure and dynamics

R0 ⇡ 1
d̄

Pn
i=1 R

(i)
0 uidi

= E[R(i)
0 ]



Rooted	spanning	trees:	“rivers”

a b

u – PageRank vector, no teleportation
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Rooted	spanning	trees:	“rivers”

a b

Tree	weight:
a2b



Network	motif:	“rivers”

• Network	risk	increases	by	a	factor	of	a/b	each	step	downstream
• Worst	place	for	disease	hot	spot	-- downstream



Network	motif:	Star



Balanced	graphs

• Balanced	graph – the	net	outflow	equals	net	inflow	for	every	vertex	
- Generalization	of	symmetric	network

• Identical	network	risk for	every	vertex:
ui =	uj for	all	i,	j

Network	risk:	net	inflow	vs.	net	outflow

High	net	inflow	vs	outflow	=	high	network	risk



Beyond	averaging

• Analytical	results	involving	lowest	order	approximation	are	clean,	provide	
biological	insights
• Balanced	graphs	– uniform	u
• Information	outside	the	radius	of	convergence?	
• Higher	order	network	structure?

" � 1



Beyond	averaging

• Analytical	results	involving	lowest	order	approximation	are	clean,	provide	
biological	insights
• Balanced	graphs	– uniform	u
• Information	outside	the	radius	of	convergence?	
• Higher	order	network	structure?

• X0 – absorption	inverse	
• Basic	connections	for	graphs	with	absorption
• Metrics	based	upon	the	absorption	inverse	combining	graph	structure	and	dynamics	at	
vertices

" � 1



Graphs	with	absorption	and	absorbing	random	walks

Laplacian	generates	random
walk	on	G
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Graphs	with	absorption	and	absorbing	random	walks

Graph	with	
absorption

(G,d)
Absorption vector
d	=	(d1,	...,	dn)

Laplacian	generates	random
walk	on	G

Random	walk	on	(G,d)

Absorption	inverse	– (new)	generalized	inverse	for	(G,d)



Generalized	inverses

• Different	generalized	inverses	for	different	
problems

• Least	squares	solutions	-- Moore-Penrose	
inverse



Generalized	inverses

• Group	inverse	L# -- inverts	on	range	L
• Square	matrix	L	of	index	one
• Spectral	inverse	of	L

range	Lker	L ker	Lrange	L

L

L#



The	absorption inverse

D-1	range	Lker	L D	ker	Lrange	L

L

Ld

Definition.  Let L be the Laplacian of a strongly connected graph with 
absorption.  Then the absorption inverse Ld is the matrix which satisfies  

Ld exists,	is	unique,	and	is	equal	to	X0



Generalized	inverses	and	graph	structure

• Laplacian L generates random walk on G

• Commute distance and L† (Lovasz; Klein and Randic; Boley et al)

• Spectral clustering and L# (Fiedler; Hagen and Kahn)

• PageRank and L# (Chung)



Properties	of	the	absorption inverse

Theorem.  The absorption inverse Ld can be expressed in terms of any 
{1}-inverse Y of L:

• Ld
= L#

i↵ absorption rates are equal

• Ld
= L†

if the absorption rates are equal and G is balanced

• Ld
+ (Ld

)

T
positive semidefinite for balanced graphs



Ld and	the	absorption-scaled	graph

G� original graph

˜G� absorption-scaled

graph



Ld and	the	absorption-scaled	graph

G� original graph

˜G� absorption-scaled

graph

Probability measure = kerLd



Ld and	the	absorption-scaled	graph

lim
z!0

(L+ zI)�1L = L#L

lim
z!0

(L+ zD)�1L = LdL.

(Ben-Israel)



Ld and	the	absorption-scaled	graph

lim
z!0

(L+ zI)�1L = L#L

lim
z!0

(L+ zD)�1L = LdL.

(L+ zD)�1 = D�1(LD�1 + zI)�1

= D�1(L̃+ zI)�1.

(Ben-Israel)

D�1L̃# = Ld

Resolvent and	
group	inverse



What	good	is	it?

• Mathematics: combinatorial	matrix	theory	and	Ld

• Network	science:	directed	distance	metric
• Applications: clustering	and	contagion



Forests	and	the	Laplacian

Definition:  A forest is a collection of trees.  

Matrix	forest	theorems:	Chaiken	(1982)

Forests	and	eigenvalues	of	Laplacian	of	subgraphs:	Chung	(2010)

Spanning	forests	and	the	group	inverse:	Kirkland	et	al	(1997),	Chebotarev	
and	Agaev	(2002)

A	forest	consisting	of	a	single	tree



Forests	and	the	group	inverse

Theorem 1 (Chebotarev and Agaev) For any ⌧ 2 R,

(I + ⌧L)�1 =
1

�(⌧)

�
Q0 + ⌧Q1 + . . .+ ⌧n�1Qn�1

�

where �(⌧) =
Pn�1

k=0 �k⌧k.

Qk — matrix of in-forests with k arcs

[Qk]ij = !(Fj!i
k )

�k – the weight of all in-forests with k arcs



A	forest	theorem	for	Ld

Theorem 1 Let Ld
be the absorption inverse for the graph with absorption

(G, d) and let G̃ be the corresponding absorption-scaled graph. Then,

Ld
ij =

!(F̃j!i
n�2)

di�̃n�1
� �̃n�2ui

�̃n�1d̄
. (1)
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A	forest	theorem	for	Ld

Theorem 1 Let Ld
be the absorption inverse for the graph with absorption

(G, d) and let G̃ be the corresponding absorption-scaled graph. Then,

Ld
ij =

!(F̃j!i
n�2)

di�̃n�1
� �̃n�2ui

�̃n�1d̄
. (1)

Follows	from	Chebotarev and	Agaev and	the	relationship	between	Ld and	
the	absorption-scaled	graph

Interpretation:	closeness! (Graphs	without	decay	-- Chebotarev	and	Shamis,	1998)	



Example:	counting	spanning	forests



Distance	metric	for	(G,d)

Large Ld

Small (negative) Ld
Small distance
Large distance

Directed	distance: distance	from	j to	i

K = max

i
Ld
ii



Distance	metric	for	(G,d)

• Triangle	inequality	depends	upon	diagonal	dominance	of	Ld

• Distance	metric	reflects	node	dynamics	(absorption),	unlike	existing	metrics

Theorem 1 Ld
has the property of (row) diagonal maximality. That is, for

each i, Ld
ij < Ld

ii for all j 6= i.



Example:	absorption can	effectively	change	topology



Hierarchical	clustering,	communities,	and	R0

K.	Jacobsen

R0 ⇡ R̂0 +
nX

i=1

�R(i)



Application	to	empirical	networks

• Data	on	network	structure
• Data	on	node	characteristics	(transmissibility,	absorption)



Case	study:	cholera	in	Nigeria

52

Regression	of	attack rate vs.	DHS covariates:
Strong	relationship	with	education
Weak	/	unclear	relationship	with	sanitation,	drinking	water

Potential	for	using	basic	demographic	covariates	to	estimate
patch	transmissibility



Estimating	mobility	networks
• Many	rich	data	sets	exist	regarding	network	structure	and	mobility....

53

Cell	phone	movements,	
Haiti	Oct	15-Dec	15,	2010
Flowminder	(L.	Bengtsson	et	al)



Estimating	mobility	networks
• ....but	getting	data	on	how	infected individuals	move is	a	challenge!

54

Moran’s	I	spatial	correlation

Weights	according	to	different	
networks



Sexual	networks	and	core	groups

Collaborators:
Bill	Miller,
Abby	Norris	Turner



Social	media	networks	and	information	propagation

2 4 6 8 10 12

2

4
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14

Twitter	re-tweet	network,	#Charlottesville
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