Some snapshots of numerical linear algebra and optimization

Michael Saunders MS&E and ICME, Stanford University

Center for Science of Information (CSol) seminar Dept of Computer Science, Purdue University West Lafayette, IN Sep 13, 2017

Some snapshots of NLA and optimization

Abstract

Everyone has something they would like to minimize or maximize. Mathematical models and computer implementations give us the field of numerical optimization. Constraints reflecting physical reality require numerical linear algebra.

We review some of the software and aerospace applications associated with Philip Gill's contributions to numerical optimization. We then review the iterative methods CG, SYMMLQ, and MINRES for solving symmetric Ax = b and show how SYMMLQ provides bounds on the 2-norm of the error for CG iterates.

Partially supported by the

National Institute of General Medical Sciences of the National Institutes of Health (NIH) Award U01GM102098

Part I

SIAM Optimization Conference

Vancouver BC, May 2017

Pre-history

Simplex via Cholesky

B = LQ, Q not kept, replace one col of B

 $LL^{T} \leftarrow LL^{T} + vv^{T} - ww^{T}$ or $LL^{T} - ww^{T} + vv^{T}$

• Gill and Murray (1973)

• Saunders (1972)

A numerically stable form of the simplex method Large-scale Linear Programming using the Cholesky Factorization

Perhaps a modern version is possible via LL^T or QR:

 Chen, Davis, Hager and Rajamanickam (2008) Supernodal Sparse Cholesky Factorization and Update/Downdate
 Davis (2011) Algorithm 915, SuiteSparseQR Multifrontal multithreaded rank-revealing sparse QR factorization

Some snapshots of NLA and optimization

LU is more sparse than LQ

Early linear programming systems assumed B is close to triangular.

- Hellerman and Rarick (1971, 1972) The (partitioned) preassigned pivot procedure P³, P⁴
- Saunders (1976)

The complexity of LU updating in the simplex method, MINOS

Markowitz LU is more sparse than P^4

Early 1980s: Rob Burchett, General Electric Basis matrices were close to symmetric

Optimal Power Flow problem Not good for P⁴

Sparse LU with Markowitz merit function

- Duff and Reid (1977) Fortran subroutines for sparse unsymmetric linear equations, MA28
- Reid (1982) A sparsity-exploiting variant of the Bartels-Golub decomposition, LA05 LA15
- Gill, Murray, S, & Wright (1987) Maintaining LU factors of a general sparse matrix, LUSOL

LUSOL does the linear algebra for MINOS, SQOPT, SNOPT, MILES, PATH, Ip_solve

McDonnell Douglas Huntington Beach, CA

SQP methods NPSOL, SNOPT

OTIS #!

Some snapshots of NLA and optimization

DC-Y single-stage-to-orbit

Some snapshots of NLA and optimization

Pre-history McDonnell Douglas

glas Block-LU updat

l Precision D

QQ procedure Qua

uad NLP Finite-difference gradients

CO spring200

Some snapshots of NLA and optimization

DC-Y landing, 2nd OTIS/NPSOL optimization

- 1st optimization: starting altitude = 2800ft
- 2nd optimization: starting altitude = variable
- New constraint needed: Don't exceed 3g

Optimum starting altitude = 1400ft(!)

Come back Alan Shephard!

DC-X flying model 1/3 scale = 40ft tall

- 1993-95: DC-X made 8 flights
 Flight 8: demonstrated turnaround maneuver; hard landing damaged aeroshell
- 1996: DC-XA made 4 flights
 Flight 3: demonstrated 26-hour turnaround
 Flight 4: landing strut failed to extend; tipped over and exploded
- 1997: McDonnell Douglas merges with Boeing Huntington Beach campus becomes part of Boeing Philip continued 5-to-8 days for several years (till Rocky Nelson retired)

McDonnell Douglas motivation

The aerospace problems kept getting bigger

SQP needs Hessian H for QP subproblems and null-space operator Z for constraints

NPSOL

- dense quasi-Newton $H = R^T R$
- dense Z from $J^T = QR$

SNOPT

- limited-memory H
- Z from sparse B = LU (reduced-gradient method)
- SQIC can switch from B = LU to block-LU updates of K

Block-LU updates

Block-LU updates

- Bisschop and Meeraus (1977) Matrix augmentation and partitioning in updating the basis inverse
- Gill, Murray, S, and Wright (1984) Sparse matrix methods in optimization
- Eldersveld and S (1992) A block-LU update for large-scale linear programming, MINOS/SC
- Huynh (2008) A large-scale QP solver based on block-LU updates of the KKT system, QPBLU
- Maes (2010)
- Wong (2011)
- Gill and Wong (2014)
- Gill and Wong (2015)

Maintaining LU factors of a general sparse matrix, QPBLUR Active-set methods for quadratic programming, icQP Software for large-scale quadratic programming, SQIC Methods for convex and general quadratic programming, SQIC

$$\begin{array}{ll} B_0 = L_0 U_0 & \text{LUSOL, BG updates} & K_0 = L_0 U_0 & \begin{array}{c} \text{LUSOL, MA57, MA9} \\ \text{SuperLU, UMFPACK} \\ B_k \equiv \begin{pmatrix} B_0 & V_k \\ E_k \end{pmatrix} & \begin{array}{c} \text{not} \\ \text{implemented} & K_k \equiv \begin{pmatrix} K_0 & V_k \\ V_k^T & D_k \end{pmatrix} \end{array}$$

Some snapshots of NLA and optimization

Quad Precision

"Carrying somewhat more precision in the arithmetic than twice the precision carried in the data and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies."

"Default evaluation in Quad is the humane option."

— William Kahan, 2011

Double MINOS Quad MINOS

real(8)	real(16)				
eps = 2.22e-16	eps = 1.93e-34				
Hardware	Software				

We use this humane approach to Quad implementation

snopt9 = Double or Quad SQOPT, SNOPT

snPrecision.f90

module snModulePrecision

- integer(4), parameter :: ip = 4, rp = 8 ! double
- ! integer(4), parameter :: ip = 8, rp = 16 ! quad

end module snModulePrecision

module sn50lp

```
use snModulePrecision, only : ip, rp
subroutine s5solveLP ( x, y )
real(rp), intent(inout) :: x(nb), y(nb)
```

1 source code 2 programs

Some snapshots of NLA and optimization

DQQ procedure for multiscale LP and NLP

Developed for systems biology models of metabolism

DQQ procedure

 Ding Ma, Laurence Yang, MS, et al. (2017) Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression Double and Quad MINOS

Meszaros "problematic" LP test set

	ltns	Times	Final objective	Pinf	Dinf
gen1	369502	205.3	-1.6903658594e-08	-06	-12
	246428	9331.3	1.2935699163e-06	-12	-31
	2394	81.6	1.2953925804e-06	-45	-30
gen2	44073	60.0	3.2927907828e+00	-04	-11
	1599	359.9	3.2927907840e+00	-	-29
	0	10.4	3.2927907840e+00	-	-32
gen4	45369	212.4	1.5793970394e-07	-06	-10
	53849	14812.5	2.8932268196e-06	-12	-30
	37	10.4	2.8933064888e-06	-54	-30
130	1229326	876.7	9.5266141574e-01	-10	-09
	275287	7507.1	-7.5190273434e-26	-25	-32
	0	0.2	-4.2586876849e-24	-24	-33

Pinf, $Dinf = log_{10}$ Primal/Dual infeasibilities

Systems biology multiscale LP modes

	ltns	Times	Final objective	Pinf	Dinf
TMA_ME	12225	37.1	8.0051076669e-07	-06	-05
	685	61.5	8.7036315385e-07	-24	-30
	0	6.7	8.7036315385e-07	-	-31
GlcAerWT	62856	9707.3	-2.4489880182e+04	+04	-05
	5580	3995.6	-7.0382449681e+05	-07	-26
	4	60.1	-7.0382449681e+05	-19	-21
GlcAlift	134693	14552.8	-5.1613878666e+05	-03	-01
	3258	1067.1	-7.0434008750e+05	-09	-26
	2	48.1	-7.0434008750e+05	-20	-22

Final Pinf/ $\|x^*\|_{\infty}$ and Dinf/ $\|y^*\|_{\infty}$ are $O(10^{-30})$

Quad NLP

Metabolic models and macromolecular expression (ME models)

Laurence Yang, UC San Diego

Quadratic convergence of major iterations (Robinson 1972)

quadMINOS 5.6 (Nov 2014)

Begin	tinyME-1	NLP cold	l sta	art NI	.P with	mu = muO		
Itn	304 ·	linear	cons	strair	nts sati	isfied.		
Callin	ng funco	n. mu =	0.80	00000	0000000	000000000000000000000000000000000000000	0000000004	
nnCon,	nnJac,	neJac		1073		1755	2681	
funcor	a sets	2681	out	of	2681	constraint	gradients.	
funobj	sets	1	out	of	1	objective	gradients.	

Major	minor	step	objective I	Feasible	Optimal	\mathtt{nsb}	ncon	penalty
1	304T	0.0E+00	8.00000E-01	6.1E-03	2.1E+03	0	4	1.0E+02
2	561T	1.0E+00	8.00000E-01	2.6E-14	3.2E-04	0	46	1.0E+02
3	40T	1.0E+00	8.28869E-01	5.4E-05	3.6E-05	0	87	1.0E+02
4	7	1.0E+00	8.46923E-01	1.2E-05	2.9E-06	0	96	1.0E+02
5	0	1.0E+00	8.46948E-01	4.2E-10	2.6E-10	0	97	1.0E+02
6	0	1.0E+00	8.46948E-01	7.9E-23	1.2E-20	0	98	1.0E+01

EXIT -- optimal solution found

13.5 secs

Quasi-Newton optimization with finite-difference gradients

Design of computer experiments

Selden Crary, indie-physicist, 2015

n = 11 points (x_i, y_i) on [-1, 1] square (one twin-point)

[d,n,p,theta1,theta2]=[2,11,2,0.128,0.069]

Some snapshots of NLA and optimization

Design of computer experiments

Selden Crary, physicist, 2015

IMSPE-optimal designs (integrated mean-squared prediction error)

min $1 - \text{trace}(B^{-1}A)$

A and B: symmetric matrices of order n + 1B increasingly ill-conditioned if points approach each other

2D, Gaussian covariance parameters σ , θ_1 , θ_2

$$A \propto \int_{-1}^{1} \int_{-1}^{1} \begin{bmatrix} 1 \\ v \end{bmatrix} \begin{bmatrix} 1 & v^{T} \end{bmatrix} dx \, dy \qquad B = \begin{bmatrix} 0 & \mathbf{1}^{T} \\ \mathbf{1} & V \end{bmatrix}$$

 v_i functions of exp(·) and erf(·), $V_{ij} = \sigma^2 e^{-\theta_1 (x_i - x_j)^2 - \theta_2 (y_i - y_j)^2}$

Some snapshots of NLA and optimization

Pagoda plot of IMSPE function

Selden Crary, 2015

With Maple, Selden has found twin-points, triple-points, ... and a new class of rational functions (the Nu class)

Smooth sailing through the black-hole/white-hole event horizon

No string theory

. . .

No complex numbers in quantum mechanics

 C^{∞} a.e. "Post", not pole

Need multistarts

IMSPE, 2D, n = 11, $\theta = (0.128, 0.069)$

Quad MINOS unconstrained optimization $\in \mathbb{R}^{22}$ without gradients 6 secs

\mathtt{Itn}	\mathtt{ph}	pp	rg	step	objective	nobj	\mathtt{nsb}	cond(H)
1	4	0	3.9E-05	1.0E+03	2.47305090E-05	57	22	4.5E+01
50	4	1	6.4E-07	6.2E+00	6.01181966E-06	1384	22	2.1E+04
100	3	1	-7.6E-08	1.1E+00	5.65611811E-06	2726	22	1.4E+05
150	4	1	8.5E-07	6.0E+00	5.11053080E-06	4102	22	8.2E+03
200	4	1	2.6E-08	1.1E-01	5.02762155E-06	5464	22	1.0E+07
239	4	1	1.1E-07	1.5E-06	5.02762154E-06	7478	22	1.0E+10
Search exit 7 too many functions.								

EXIT -- optimal solution found

No. of iterations239Objective value5.0276215358E-06No. of calls to funobj7538Calls with mode=2 (f, known g)244Calls for forward differencing4466Calls for central differencing1716Max Primal infeas0 0.0E+00Max Dual infeas2 1.1E-07

not great \uparrow

17 points on $[-1, 1]^2$ (two twin-points)

Quad MINOS design refined by Selden via MAPLE

After further downhill searching, both sets of twins are now close, confirming the conjecture of a true double– twin-point design. 20161106

Linear algebra question

A, B real, symmetric, indefinite, ill-conditioned

cf. GEV problem $Ax = \lambda Bx$

min IMSPE = $1 - \text{trace}(B^{-1}A)$ trace $(B^{-1}A) = \sum \lambda_i$

• QZ algorithm ignores symmetry but avoids ill-conditioned B^{-1}

• Will QZ compute real λ_i ?

Yuji Nakatsukasa (Oxford) is developing qdwhgep.m for $Ax = \lambda Bx$ (real, symmetric)

• Congruence transformations are real

 $P^T A P y = \lambda P^T B P y$

- Eigenvalues can be complex conjugate pairs
- trace $(B^{-1}A) = \sum \lambda_i$ will be real

PDCO in C++

Ron Estrin, UBC \rightarrow Stanford

PDCO in C++

Matlab PDCO: regularized convex optimization ($D_1, D_2 \succ 0$, diagonal)

$$\begin{array}{ll} \underset{x,r}{\text{minimize}} & \phi(x) + \frac{1}{2} \| D_1 x \|^2 + \frac{1}{2} \| r \|^2 \\ \text{subject to} & Ax + D_2 r = b, \quad \ell \le x \le u. \end{array}$$

- Needed for huge metabolic LP models that are near-block-diagonal
- C++ has double and float128 data-types
- Compiler generates multiple codes
- Switch from double to quad at run-time

Pre-history McDonnell Douglas Block-LU updates Quad Precision DQQ procedure Quad NLP Finite-difference gradients PDCO spring200

spring200

An optimal control problem modeling a spring/mass/damper

Some snapshots of NLA and optimization

spring200

spring200

min
$$f(y, z, u) = \frac{1}{2} \sum_{t=0}^{T} z_t^2$$

 $y_{t+1} = y_t - 0.01 y_t^2 - 0.004 z_t + 0.2 u_t$
 $z_{t+1} = z_t + 0.2 y_t$ $t = 0, \dots, T - 1$
 $-1 \le y_t$ $-0.2 \le u_t \le 0.2$
 $y_0 = 0$ $y_T = 0$ $z_0 = 10$

	Opt tol	Majors	Minors	Superbasics	Objective	Time
double	1e-06	13	576	18	1186.3839	0.05
quad	1e-15	31	1282	113	1186.3820	2.75

quad-MINOS gives an unexpectedly "clean" solution (many variables exactly zero, including control variables u_t)

Some snapshots of NLA and optimization

nite-difference gradients PDCO spring200

double-MINOS

Some snapshots of NLA and optimization

Finite-difference gradients PDCO sp

spring200

Some snapshots of NLA and optimization

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error < LQ error Numerical results

Part II

Householder Conference

Blacksberg VA. June 2017

Joint work with Ron Estrin and Dominique Orban

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Conclusions

Lanczos for symmetric Ax = b

Error bounds for SYMMLQ and hence CG

Assume exact arithmetic Check experimentally

Previous work

Error estimates for CG

Golub and Strakoš (1994) Golub and Meurant (MMQ 1994, 1997) Meurant (1997, 2005)

Brezinski (1999) Frommer, Kahl, Lippert, and Rittich (2013)

Finite-precision analyses

- Strakoš and Tichý (2002) On error estimation in the CG method and why it works in finite precision computations **ETNA 13**
- Meurant (2006), The Lanczos and CG Algorithms: From Theory to Finite Precision Computations SIAM
- Greif, Paige, Titley-Peloquin, and Varah (2016) Numerical equivalences among Krylov subspace algorithms for skew-symmetric matrices SIMAX 37
- Paige (2017), Accuracy of the Lanczos process for the eigenproblem and solution of equations SIMAX soon (hot off the press!)

Error bounds for CG via SYMMLQ

The Lanczos process for A, b

For $k = 1, 2, ..., \ell$ Lanczos generates $V_k = \begin{bmatrix} v_1 & v_2 & \dots & v_k \end{bmatrix}$ and $\{\alpha_k, \beta_k > 0\}$ such that

$$\beta_1 v_1 = b$$
 $AV_k = V_{k+1} \underline{T}_k$ $||v_k|| = 1$ $\beta_{\ell+1} = 0$

SYMMLQ, CG, MINRES for Ax = b

- $x_k = V_k y_k$
- $r_k = b Ax_k = V_{k+1}(\beta_1 e_1 \underline{T}_k y_k)$
- 3 ways to make r_k small

 r_k small if $\underline{T}_k y_k \approx \beta_1 e_1$ 3 subproblems for choosing y_k

SYMMLQ: min
$$||y_k||$$
 st $\underline{T}_{k-1}^T y_k = \beta_1 e_1$
CG: $T_k y_k = \beta_1 e_1$
MINRES: $\underline{T}_k y_k \approx \beta_1 e_1$

Lanczos for Ax = b SYMMLQ

Bounding $||x_*||^2 = b^T A^{-2} b$ CG error < LQ error Numerical results

SYMMLO

min $||y_k||$ st $T_{k-1}^T y_k = \beta_1 e_1$ (then $x_k^L = V_k y_k$) Needs $\underline{T}_{k-1}^{T} = \begin{bmatrix} L_{k-1} & 0 \end{bmatrix} Q_k$

$$x_{k}^{L} = W_{k-1} z_{k-1} = x_{k-1}^{L} + \zeta_{k-1} w_{k-1}$$

moves in theoretically orthogonal directions

Error bounds for CG via SYMMLQ

Lanczos for Ax = b

SYMMLQ recursions

$$\underline{T}_{k-1}^{\mathsf{T}} Q_k^{\mathsf{T}} = \begin{bmatrix} L_{k-1} & 0 \end{bmatrix} \qquad \qquad L_{k-1} z_{k-1} = \beta_1 e_1$$

$$T_k Q_k^T = \bar{L}_k = \begin{bmatrix} L_{k-1} \\ 0 & \epsilon_k & \delta_k & \bar{\gamma}_k \end{bmatrix} \qquad \quad \bar{L}_k \bar{z}_k = \beta_1 e_1$$

$$ar{W}_k = V_k Q_k^{\mathsf{T}} = \begin{bmatrix} W_{k-1} & ar{w}_k \end{bmatrix} \qquad ar{z}_k = \begin{bmatrix} z_{k-1} \\ ar{\zeta}_k \end{bmatrix}$$

SYMMLQ recursions

$$\underline{T}_{k-1}^{\mathsf{T}} Q_k^{\mathsf{T}} = \begin{bmatrix} L_{k-1} & 0 \end{bmatrix} \qquad \qquad L_{k-1} z_{k-1} = \beta_1 e_1$$

$$T_k Q_k^T = \bar{L}_k = \begin{bmatrix} L_{k-1} \\ 0 & \epsilon_k & \delta_k & \bar{\gamma}_k \end{bmatrix} \qquad \quad \bar{L}_k \bar{z}_k = \beta_1 e_1$$

$$ar{W}_k = V_k Q_k^{\mathsf{T}} = \begin{bmatrix} W_{k-1} & ar{w}_k \end{bmatrix} \qquad ar{z}_k = \begin{bmatrix} z_{k-1} \\ ar{\zeta}_k \end{bmatrix}$$

$$x_{k}^{L} = W_{k-1}z_{k-1} = x_{k-1}^{L} + \zeta_{k-1}w_{k-1}$$
$$x_{k}^{C} = \bar{W}_{k}\bar{z}_{k} \qquad = x_{k}^{L} + \bar{\zeta}_{k}\bar{w}_{k}$$

 W_{k-1} , \overline{W}_k theoretically have orthonormal columns

Error bounds for CG via SYMMLQ

SYMMLQ error bound

$$x_k^L = W_{k-1} z_{k-1}, \qquad x_k^C = \bar{W}_k \bar{z}_k$$

 $W_{k-1}, \ \bar{W}_k$ have theoretically orthonormal columns

$$\|x_k^L\|^2 = \|z_{k-1}\|^2 = \sum_{1}^{k-1} \zeta_j^2$$

$$||x_*||^2 = ||z_\ell||^2 = \sum_1^\ell \zeta_j^2$$

$$||x_* - x_k^L||^2 = ||x_*||^2 - ||x_k^L||^2$$

To bound the SYMMLQ error we need a bound on $||x_*||^2 = b^T A^{-2} b$

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error < LQ error Numerical results

Bounding $||x_*||^2 = b^T A^{-2} b$

Needs Golub and Meurant

Golub and Meurant (1994, 1997)

Estimate bilinear forms $u^T f(A)v$ using Gaussian-quadrature theory

Theorem

For SPD A and suitable f, fix $\lambda_{est} \in (0, \lambda_{min}(A))$ and choose ω_k such that $\widetilde{T}_{k} = \begin{bmatrix} T_{k-1} & \beta_{k} e_{k-1} \\ \beta_{k} e_{1}^{T} & \omega_{k} \end{bmatrix}, \ \lambda_{\min}(\widetilde{T}_{k}) = \lambda_{\text{est.}} \text{ Then } b^{T} f(A) b \leq \|b\|^{2} e_{1}^{T} f(\widetilde{T}_{k}) e_{1}.$

 $f(\xi) = \xi^{-2}$ gives $||x_*||^2 = b^T A^{-2} b \le ||b||^2 e_1^T \widetilde{T}_{L^2} e_1$

Golub and Meurant (1994, 1997)

Estimate bilinear forms $u^T f(A)v$ using Gaussian-quadrature theory

Theorem

For SPD A and suitable f, fix $\lambda_{est} \in (0, \lambda_{min}(A))$ and choose ω_k such that $\widetilde{T}_{k} = \begin{bmatrix} T_{k-1} & \beta_{k} e_{k-1} \\ \beta_{k} e_{t}^{T} & \omega_{k} \end{bmatrix}, \ \lambda_{\min}(\widetilde{T}_{k}) = \lambda_{\text{est}}. \text{ Then } b^{T} f(A) b \leq \|b\|^{2} e_{1}^{T} f(\widetilde{T}_{k}) e_{1}.$

$$f(\xi) = \xi^{-2}$$
 gives $||x_*||^2 = b^T A^{-2} b \le ||b||^2 e_1^T \widetilde{T}_k^{-2} e_1$

Theorem

 $\omega_k = \lambda_{\text{est}} + \eta$, where η is last entry solution of $(T_{k-1} - \lambda_{\text{est}} I) u_{k-1} = \beta_k^2 e_{k-1}$.

QR on
$$(T_{k-1} - \lambda_{\mathsf{est}}I)$$
 gives η, ω_k

LQ on
$$\widetilde{T}_k$$
 gives $\|b\|^2 e_1^T \widetilde{T}_k^{-2} e_1$

Error bounds for CG via SYMMLQ

Computing $\beta_1^2 e_1^T \widetilde{T}_k^{-2} e_1$

 $\widetilde{T}_k = \widetilde{L}_k \widetilde{Q}_k$ is almost the same as $T_k = \overline{L}_k Q_k$.

• Solve
$$\widetilde{L}_k \widetilde{z}_k = \beta_1 e_1$$
 to get $\widetilde{z}_k = \begin{bmatrix} z_{k-1} \\ \widetilde{\zeta}_k \end{bmatrix}$

•
$$\|x_*\|^2 \le \beta_1^2 e_1^T \widetilde{T}_k^{-2} e_1 = \|\beta_1 \widetilde{L}_k^{-1} e_1\|^2 = \|\widetilde{z}_k\|^2$$

• We already solve
$$L_{k-1}z_{k-1} = \beta_1 e_1$$
 and have $\|x_k^L\|^2 = \|z_{k-1}\|^2$

Hence

$$\begin{aligned} \|x_* - x_k^L\|^2 &= \|x_*\|^2 - \|x_k^L\|^2 \\ &\leq \|\widetilde{z}_k\|^2 - \|z_{k-1}\|^2 = \widetilde{\zeta}_k^2 \end{aligned}$$

and we can bound the SYMMLQ error in O(1) work per iteration:

$$\|x_* - x_k^L\| \le \epsilon_k^L \equiv |\widetilde{\zeta}_k|$$

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2} b$ CG error < LQ error

Numerical results

CG error \leq SYMMLQ error

Error bounds for CG via SYMMLQ

Theorem (Estrin, Orban, and S. 2017)

For positive-semidefinite consistent Ax = b,

$$\begin{aligned} \|x_k^L\| &\leq \|x_k^C\| \\ x_* - x_k^C\| &\leq \|x_* - x_k^L\| \end{aligned}$$

Immediate consequence:

Better bound:

$$\|x_{*} - x_{k}^{C}\| \leq \|x_{*} - x_{k}^{L}\| \leq \epsilon_{k}^{L}$$
$$\|x_{*} - x_{k}^{C}\| \leq \epsilon_{k}^{C} := \sqrt{(\epsilon_{k}^{L})^{2} - \bar{\zeta}_{k}^{2}} \qquad (x_{k}^{C} = x_{k}^{L} + \bar{\zeta}_{k}\bar{w}_{k})$$

Golub and Strakoš (1994)

- Store x_k^C, \ldots, x_{k+d}^C for moderate values of d (sliding window approach)
- Take $x_{k+d} \approx x_*$ for some purposes

Lemma (Estrin, Orban, and S. 2017)

$$egin{aligned} & heta_k := x_k^{\mathcal{T}} x_k^{\mathcal{C}} - \|x_k^{\mathcal{C}}\|^2 \geq 0 \ & \|x_k - x_k^{\mathcal{C}}\| \leq \sqrt{(\epsilon_k^{\mathcal{C}})^2 - 2 heta_k} & (ext{not computable}) \end{aligned}$$

$$\theta_k^{(d)} := (x_{k+d})^T x_k^C - \|x_k^C\|^2 \le \theta_k$$

Better bound:

$$\|x_* - x_k^{\mathsf{C}}\| \leq \sqrt{(\epsilon_k^{\mathsf{C}})^2 - 2\theta_k^{(d)}}$$

Error bounds for CG via SYMMLQ

Summary so far

- For SPD Ax = b, we derived upper bounds on the SYMMLQ and CG errors, assuming exact arithmetic. The results hold if Ax = b is semidefinite and consistent.
- Numerical experiments show the bounds hold until convergence, but rigorous finite-precision analysis is desirable.
- If A is indefinite, the SYMMLQ upper bound becomes an estimate. Could obtain a bound by treating $b^T A^{-2}b$ as a quadratic form in A^2 , but this is expensive (2 applications of A per iteration).

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error < LQ error Numerical results

Numerical results

Error bounds for CG via SYMMLQ

SYMMLQ error for UTEP/Dubcova1 n = 16129 SPD $\kappa(A) = 10^3$

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES

CG error for UTEP/Dubcova1 n = 16129 SPD $\kappa(A) = 10^3$

Error bounds for CG via SYMMLQ

 $\text{Lanczos for } Ax = b \qquad \text{SYMMLQ} \qquad \text{Bounding } \|x_*\|^2 = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion} = b^T A^{-2}b \qquad \text{CG error} \qquad \text{Numerical results} \qquad \text{CG error} = b^T A^{-2}b \qquad \text{CG error} \qquad \text{CG e$

CG error for Nasa/nasa4704 n = 4704 SPD $\kappa(A) = 10^7$ d = 10

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Conclusions CG vs MINRES Conclusion Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Conclusion Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Conclusion Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Conclusion Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Conclusion Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error $||x_*||^2 = b^T A^{-2}b$ CG error $||x_*||^2 = b^T A^{-2$

CG error for Nasa/nasa4704 n = 4704 SPD $\kappa(A) = 10^7$ d = 100

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES

SYMMLQ error for HB/bcsstk28 n = 4410 SPD $\kappa(A) = 10^8$

Error bounds for CG via SYMMLQ

 $\text{Lanczos for } Ax = b \qquad \text{SYMMLQ} \qquad \text{Bounding } \|x_*\|^2 = b^T A^{-2}b \qquad \text{CG error} \leq \text{LQ error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES} \qquad \text{Conclusion}$

SYMMLQ error for GHS_psdef/wathen100 n = 30401 SPD $\kappa(A) = 10^3$

Error bounds for CG via SYMMLQ

Conclusions

CG error for HB/bcsstk28 n = 4410 SPD $\kappa(A) = 10^8$

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES Correction of the second second

CG error for GHS_psdef/wathen100 n = 30401 SPD $\kappa(A) = 10^3$

Error bounds for CG via SYMMLQ

SYMMLQ error for PARSEC/Na5 n = 5822 indef $\kappa(A) = 10^3$

Error bounds for CG via SYMMLQ

SYMMLQ error for PARSEC/SiNa n = 5743 indef $\kappa(A) = 10^2$

Error bounds for CG via SYMMLQ

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error < LQ error Numerical results

CG vs MINRES

Reminder: CG vs MINRES

on SPD Ax = b

Error bounds for CG via SYMMLQ

CG vs MINRES

• D. Titley-Peloquin (2010), Backward Perturbation Analysis of Least Squares Problems, PhD thesis, McGill University

Backward errors for
$$x_k$$
 $\min_{\xi, E, f} \xi$ st $(A + E)x_k = b + f,$ $\frac{\|E\|}{\|A\|} \le \alpha\xi,$ $\frac{\|f\|}{\|b\|} \le \beta\xi$

CG vs MINRES

• D. Titley-Peloquin (2010), Backward Perturbation Analysis of Least Squares Problems, PhD thesis, McGill University

Backward errors for x_k $\frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|} \le \alpha \boldsymbol{\xi},$ $\frac{\|f\|}{\|b\|} \le \beta\xi$ st $(A+E)x_k = b+f$, $\min_{\substack{\xi, E, f}} \xi$

• D. C.-L. Fong and S. (2012), CG versus MINRES: An empirical comparison, SQU Journal for Science

Theorem

MINRES backward errors $||E_k|| \propto ||r_k|| / ||x_k||$ and $||f_k|| \propto ||r_k||$ decrease monotonically

Lanczos for Ax = b SYMMLQ Bounding $||x_*||^2 = b^T A^{-2}b$ CG error \leq LQ error Numerical results CG vs MINRES

CG vs MINRES, n = 19779, backward errors $||r_k|| / ||x_k||$

Error bounds for CG via SYMMLQ
$\text{Lanczos for } Ax = b \qquad \text{SYMMLQ} \qquad \text{Bounding } \|x_*\|^2 = b^T A^{-2}b \qquad \text{CG error} \qquad \text{Numerical results} \qquad \text{CG vs MINRES}$

CG vs MINRES, n = 245874, backward errors $||r_k|| / ||x_k||$

Error bounds for CG via SYMMLQ

CSol, Purdue Part II

Bounding $||x_*||^2 = b^T A^{-2} b$

CG error < LQ error Numerical results

Conclusions

Conclusions

Error bounds for CG via SYMMLQ

Conclusions

- Derived a **cheap** estimate of errors $||x_* x_k||$ for SYMMLQ and CG.
- When A is SPD, the estimates are upper bounds (assuming exact arithmetic, but empirically in practice until convergence).
- Requires underestimate of smallest nonzero eigenvalue.
 - Common to Gauss-Radau guadrature based methods.
 - Depending on application (e.g. some PDEs) may be reasonable to obtain.
 - Easy for damped least-squares $(A^T A + \lambda^2 I)x = A^T b$. Hence good for LSLQ and LSQR.
- When A is indefinite, the error bound for SYMMLQ seems a good estimate.
- Extend to LSLQ for least-squares problems.

References

- R. Estrin, D. Orban, and S. Euclidean-norm error bounds for SYMMLQ and CG
 - SIMAX (revised Aug 2017)

References

- R. Estrin, D. Orban, and S. Euclidean-norm error bounds for SYMMLQ and CG SIMAX (revised Aug 2017)
- R. Estrin, D. Orban, and S. LSLQ: An iterative method for linear least-squares with an error minimization property SIMAX (in revision Sep 2017)

References

- R. Estrin, D. Orban, and S. Euclidean-norm error bounds for SYMMLQ and CG SIMAX (revised Aug 2017)
- R. Estrin, D. Orban, and S.

LSLQ: An iterative method for linear least-squares with an error minimization property SIMAX (in revision Sep 2017)

• Seismic inverse problem. PDE-constrained optimization

G vs MINRES

Conclusions

References

- R. Estrin, D. Orban, and S. Euclidean-norm error bounds for SYMMLQ and CG SIMAX (revised Aug 2017)
- R. Estrin, D. Orban, and S.

LSLQ: An iterative method for linear least-squares with an error minimization property SIMAX (in revision Sep 2017)

- Seismic inverse problem, PDE-constrained optimization
- Error in gradient of penalty function is bounded by error in x

References

- R. Estrin, D. Orban, and S. Euclidean-norm error bounds for SYMMLQ and CG SIMAX (revised Aug 2017)
- R. Estrin, D. Orban, and S.

LSLQ: An iterative method for linear least-squares with an error minimization property SIMAX (in revision Sep 2017)

- Seismic inverse problem. PDE-constrained optimization
- Error in gradient of penalty function is bounded by error in x
- Monotonic error in LSLQ iterates \Rightarrow monotonic decrease in error in gradient

G vs MINRES

Conclusions

Special thanks

• Chris Paige

Q Bounding $||x_*||^2 = b^T A^{-2} b$

CG error \leq LQ error

Numerical results

CG vs MINRES

Conclusions

- Chris Paige
- Gene Golub

G vs MINRES

Conclusions

- Chris Paige
- Gene Golub
- Gene Golub, Gérard Meurant, Zdeněk Strakoš

Q Bounding $||x_*||^2 = b^T A^{-2} b$

CG error \leq LQ error

Numerical results

G vs MINRES

Conclusions

- Chris Paige
- Gene Golub
- Gene Golub, Gérard Meurant, Zdeněk Strakoš
- Ron Estrin, Dominique Orban

Q Bounding $||x_*||^2 = b^T A^{-2} b$

CG error \leq LQ error

Numerical result

G vs MINRES

Conclusions

- Chris Paige
- Gene Golub
- Gene Golub, Gérard Meurant, Zdeněk Strakoš
- Ron Estrin, Dominique Orban
- David Gleich

Q Bounding $||x_*||^2 = b^T A^{-2} b$

CG error \leq LQ error

Numerical result

CG vs MINRES

Conclusions

- Chris Paige
- Gene Golub
- Gene Golub, Gérard Meurant, Zdeněk Strakoš
- Ron Estrin, Dominique Orban
- David Gleich
- Yuja Wang, youtube

G vs MINRES

Conclusions

- Chris Paige
- Gene Golub
- Gene Golub, Gérard Meurant, Zdeněk Strakoš
- Ron Estrin, Dominique Orban
- David Gleich
- Yuja Wang, youtube
- Late-night talk shows (come back Jay Leno!)