
Objective

We observe a length-n sample generated by an un-
known, stationary ergodic Markov process over a fi-
nite alphabet A. Our goal is to provide sufficient
conditions on length-n sample such that:
• Naive estimates of transition probabilities be
accurate.

• Naive estimates of stationary probabilities be
accurate.

• Provide deviation bounds which are entirely data
dependent.

We also apply the estimation results for stationary
probabilities to modify the Coupling From the Past
algorithm for detecting communities in a graph.

Estimation Challenges

• The process could have long memory.
• The process could be slow mixing.

Natural Approach

• Memory is unknown a-priori.
• Approximate with a coarser Markov process:
XMemory size is kn for some known kn.
X Choose kn = αn log n for some αn = O(1).
X Leads to a consistent estimator as n grows.

• Call the coarser model the Aggregated Model.

Naive Estimates

Computation of naive estimators:
• Suppose sample is Y n

1 = 1101010100.
• Let Y 0

−∞ = · · · 00.
• Interested in aggregated parameters at depth 2.
X For instance, P̂ (1|10) = 3

4 and P̂ (0|10) = 1
4.

· · · 00, 110 1 0 1 0 1 00
• No reason such estimates make sense, since sample
is not generated from aggregated model.

Dependencies Die Down

Considering our physical motivation, we assume
• Influence of prior symbols die down as we look
further.

• Assume original process belongs toMd.
X Does not imply memory is bounded.
X No influence on mixing properties.

Good States

Combining universal compression results and the fact
that dependencies die down:
• Identify a set G̃ ⊆ Akn of good states that have
occurred frequently enough in the sample.

• Any string w ∈ G̃ is amenable to concentration
results for conditional probabilities .

Stationary Probabilities

• Stationary probabilities are sensitive function of
transition probabilities.

For deviation bounds, we consider the restriction of
{Yn}n≥1 to G̃. Call it {Zm}m≥1.
X {Zm}m≥1 can be characterized using stopping

times and by itself a Markov process.
X Let ñ be the total count of good states in the

sample. Define Vm , E[Nw|Z0, Z1, · · ·Zm].
X {Vm}ñm=0 is a Doob Martingale.
XBound Martingale differences by coupling

argument.
XUsing Azuma’s Inequality for deriving

concentration results.

Theorem

If {Zm}m≥1 is aperiodic, then for any t > 0, Y 0
−∞

and w ∈ G̃ we have
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µ(w)
µ(G̃)

| ≥ t|Y 0
−∞) ≤
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where B is entirely data dependent.

Coupling From The Past [Propp & Wilson, 1996]

• Run coupled Markov chains, one from each state s ∈ S, and evolve the chains backwards in time.
• When all chains coalesce to a single state at time 0, that state is an exact sample from the stationary
distribution.

Community Detection

• Start r = |S| markov chains, one at each state s ∈ S.
• Perform a random walk, simulating the chains backwards in time, using CFTP.
• Identify a set of critical times T , where chains have partially coalesced, each giving a clustering C.
• Output the clustering C with the lowest cost J (C).

Partial Coalescence

Future Work

• The stationary probability results are sufficient to say that some estimates are approximately accurate with
high confidence. A natural, but perhaps difficult, question is whether we can give necessary conditions on
how the data must look for a given estimate to be accurate.

• The current algorithm performs well on small Stochastic Block and LFR models, but we would like to adapt
it to work on larger LFR models.
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