

Markov Chains in the Slow Mixing Regime

Meysam Asadi, Kevin Oshiro, Ramezan Paravi, Narayana Santhanam, Changlong Wu {masadi,kevinro,paravi,nsanthan,wuchangl}@hawaii.edu

Department of Electrical Engineering, University of Hawai'i Mānoa

Objective

We observe a length-n sample generated by an unknown, stationary ergodic Markov process over a finite alphabet \mathcal{A} . Our goal is to provide sufficient conditions on length-n sample such that:

- Naive estimates of transition probabilities be accurate.
- Naive estimates of stationary probabilities be accurate.
- Provide deviation bounds which are entirely data dependent.

We also apply the estimation results for stationary probabilities to modify the Coupling From the Past algorithm for detecting communities in a graph.

Estimation Challenges

- The process could have long memory.
- The process could be slow mixing.

Natural Approach

- Memory is unknown a-priori.
- Approximate with a *coarser* Markov process:
- ✓ Memory size is k_n for some known k_n .
- ✓ Choose $k_n = \alpha_n \log n$ for some $\alpha_n = \mathcal{O}(1)$.
- \checkmark Leads to a consistent estimator as n grows.
- Call the coarser model the *Aggregated Model*.

Naive Estimates

Computation of naive estimators:

- Suppose sample is $Y_1^n = 1101010100$.
- Let $Y_{-\infty}^0 = \cdots 00$.
- Interested in aggregated parameters at depth 2.
- ✓ For instance, $\hat{P}(1|10) = \frac{3}{4}$ and $\hat{P}(0|10) = \frac{1}{4}$ 00, 110(1)0(1)0(0)
- No reason such estimates make sense, since sample is *not* generated from aggregated model.

Dependencies Die Down

Considering our physical motivation, we assume

- Influence of prior symbols die down as we look further.
- Assume original process belongs to \mathcal{M}_d .
- ✓ Does not imply memory is bounded.
- ✓ No influence on mixing properties.

Good States

Combining universal compression results and the fact that dependencies die down:

- Identify a set $\tilde{G} \subseteq \mathcal{A}^{k_n}$ of good states that have occurred frequently enough in the sample.
- Any string $\mathbf{w} \in \tilde{G}$ is amenable to concentration results for conditional probabilities .

Stationary Probabilities

• Stationary probabilities are sensitive function of transition probabilities.

For deviation bounds, we consider the restriction of $\{Y_n\}_{n\geq 1}$ to \tilde{G} . Call it $\{Z_m\}_{m\geq 1}$.

- ✓ $\{Z_m\}_{m\geq 1}$ can be characterized using *stopping* times and by itself a Markov process.
- ✓ Let \tilde{n} be the total count of good states in the sample. Define $V_m \triangleq \mathbb{E}[N_{\mathbf{w}}|Z_0, Z_1, \cdots Z_m]$.
- $\checkmark \{V_m\}_{m=0}^{\tilde{n}}$ is a Doob Martingale.
- ✓ Bound Martingale differences by coupling argument.
- ✓ Using Azuma's Inequality for deriving concentration results.

Theorem

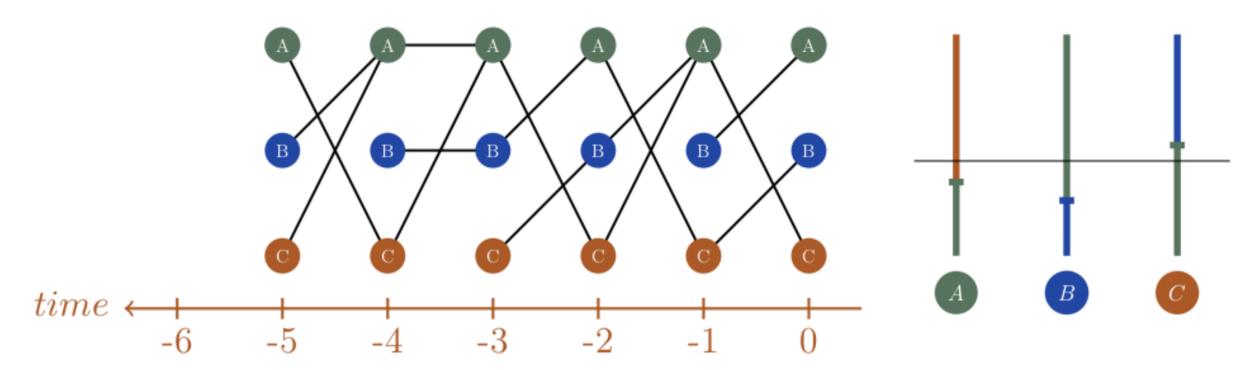
If $\{Z_m\}_{m\geq 1}$ is aperiodic, then for any t>0, $Y_{-\infty}^0$ and $\mathbf{w}\in \tilde{G}$ we have

$$\mathcal{P}(|N_{\mathbf{w}} - \tilde{n}\frac{\mu(\mathbf{w})}{\mu(\tilde{G})}| \ge t|Y_{-\infty}^{0}) \le 2\exp\left(-\frac{(t-\mathcal{B})^{2}}{2\tilde{n}\mathcal{B}^{2}}\right),$$

where \mathcal{B} is entirely data dependent.

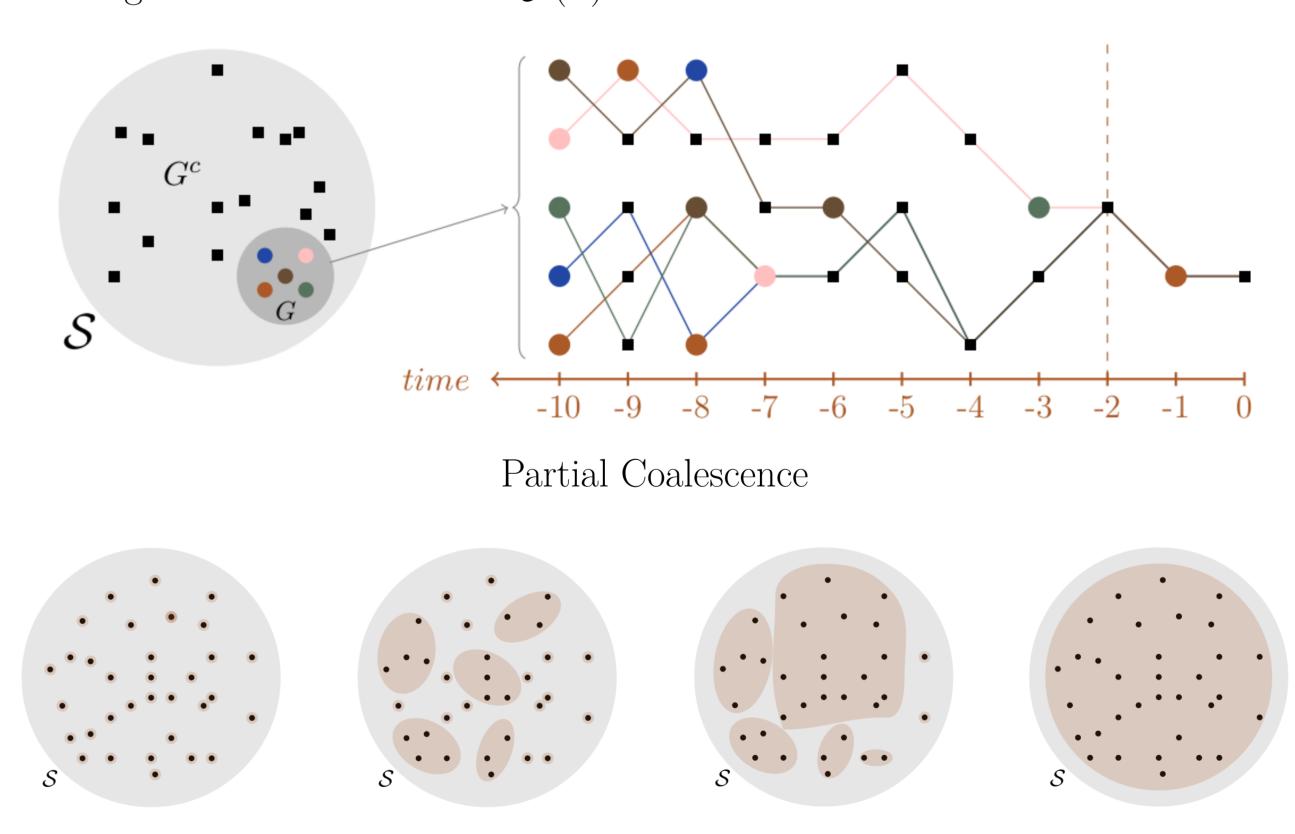
Coupling From The Past [Propp & Wilson, 1996]

- Run coupled Markov chains, one from each state $s \in \mathcal{S}$, and evolve the chains backwards in time.
- When all chains coalesce to a single state at time 0, that state is an exact sample from the stationary distribution.



Community Detection

- Start $r = |\mathcal{S}|$ markov chains, one at each state $s \in \mathcal{S}$.
- Perform a random walk, simulating the chains backwards in time, using CFTP.
- Identify a set of critical times T, where chains have partially coalesced, each giving a clustering \mathcal{C} .
- Output the clustering \mathcal{C} with the lowest cost $\mathcal{J}(\mathcal{C})$.



Future Work

- The stationary probability results are sufficient to say that some estimates are approximately accurate with high confidence. A natural, but perhaps difficult, question is whether we can give necessary conditions on how the data must look for a given estimate to be accurate.
- The current algorithm performs well on small Stochastic Block and LFR models, but we would like to adapt it to work on larger LFR models.
- *This work was supported by NSF grants CCF-1065632, CCF-1018984, EECS-1029081, CCF-1619452 and the Center for Science of Information. The authors also thank A. Kavcic and M. Mahoney for helpful discussions.