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Objective

We observe a length-n sample generated by an un-
known, stationary ergodic Markov process over a fi-
nite alphabet A. Our goal is to provide sufficient
conditions on length-n sample such that:

« Naive estimates of transition probabilities be
accurate.

« Naive estimates of stationary probabilities be
accurate.

» Provide deviation bounds which are entirely data
dependent.

We also apply the estimation results for stationary
probabilities to modity the Coupling From the Past
algorithm for detecting communities in a graph.

Estimation Challenges

» 'The process could have long memory.

» The process could be slow mixing.

Natural Approach

» Memory is unknown a-priors.

« Approximate with a coarser Markov process:
v' Memory size is kj, for some known k.
v Choose ky, = ap logn for some oy, = O(1).
v’ Leads to a consistent estimator as n grows.

« Call the coarser model the Aggregated Model.

Naive Estimates

Computation of naive estimators:

= Suppose sample is Y{* = 1101010100.

« Let YV =---00.

» Interested in aggregated parameters at depth 2.

v For instance, P(1|10) = 2 and P(0]10) = :
++-00,110 1 0CLOL00]

» No reason such estimates make sense, since sample
is not generated from aggregated model.

Dependencies Die Down

Considering our physical motivation, we assume

» Influence of prior symbols die down as we look

further.

« Assume original process belongs to M.

v Does not imply memory is bounded.
v No influence on mixing properties.

Good States

Combining universal compression results and the fact
that dependencies die down:

- Identify a set G C AF» of good states that have
occurred frequently enough in the sample.

- Any string w € G is amenable to concentration
results for conditional probabilities .

Stationary Probabilities

« Stationary probabilities are sensitive function of
transition probabilities.

For deviation bounds, we consider the restriction of

{Yn}n21 to é Call it {Zm}m21-

vV {Zn}m>1 can be characterized using stopping
times and by itself a Markov process.

v Let n be the total count of good states in the
sample. Define V,, = E[Nyw|Zo, Z1, - -+ Zpn).

vV AV} _, is a Doob Martingale.

v' Bound Martingale differences by coupling
argument.

v Using Azuma’s Inequality for deriving
concentration results.
Theorem

If {Zin}m>1 1s aperiodic, then for any ¢ > 0, YV
and w € G we have
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where B is entirely data dependent.
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Coupling From The Past [Propp & Wilson, 1996]

« Run coupled Markov chains, one from each state s € S, and evolve the chains backwards in time.

» When all chains coalesce to a single state at time 0, that state is an exact sample from the stationary
distribution.

Community Detection

« Start 7 = |S| markov chains, one at each state s € S.
« Perform a random walk, simulating the chains backwards in time, using CFTP.

« Identify a set of critical times 7', where chains have partially coalesced, each giving a clustering C.
« Output the clustering C with the lowest cost J(C).
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Future Work

» The stationary probability results are sufficient to say that some estimates are approximately accurate with
high confidence. A natural, but perhaps difficult, question is whether we can give necessary conditions on
how the data must look for a given estimate to be accurate.

» The current algorithm performs well on small Stochastic Block and LFR models, but we would like to adapt
it to work on larger LEFR models.
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