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Motivation

- Stability [1,2,3,4]: a “good" algorithm should not
change its solution much if we modify training set
slightly.
- Stability implies generalization : Unlike complexity
based approaches, stability is an algorithmically fea-
sible sanity check for generalization.
» [5] recently showed that fixed step-size stochastic
gradient descent (SGD) has uniform stability, linearly
dependent of iteration.
» We would like to provide a complete picture

* stability can be estabilished for a wide range of it-
erative optimization algorithms

* stability constrains the optimal convergence rate
of optimizaiton algorithms

Generalization <> Finite complexity
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Stability and Convergence Tradeoff
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A too stable algorithm can not converge too fast!

A lower bound on population risk combined with an good
upper bound on stability, imples a lower bound on the op-
timal convergence rate.

Convex Smooth Loss

The loss function is convex, L-Lipschitz, -smooth.
Le Cam's method for risk lower bound:

Consequence:
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Gradient Descent’s Stability
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The stability of gradient descent for convex smooth ob-
jective mainly relies on its contracting property.
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The error term caused by the data perturbation accumu-
lates linearly as a function of iteration.
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Descreasing Step-size SGD’s Stability
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Nesterov Accelerated Gradient’s Stability
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Contracting property of gradient descent is not enough
to guarantee the stability!

- 1D or quadratic objective: (modified lower bound)
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- General case: Not clear yet.

Strongly Convex Smooth Loss

All previous stability bounds hold. However, these
bound might not be good enough, as an algorithm inde-
pendent stability upper bound exists.
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In the strongly convex setting, the population lower
bound is of the same order. The tradeoff is not as nota-

ble as in convex smooth case.
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