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Shannon Legacy

The Information Revolution started in 1948, with the publication of:

A Mathematical Theory of Communication.

The digital age began.

Claude Shannon:

Shannon information quantifies the extent to which a recipient

of data can reduce its statistical uncertainty.

“These semantic aspects of communication are irrelevant . . .”

Fundamental Limits for Compression and Data Transmission.

Applications Enabler/Driver:
CD, iPod, DVD, video games, computer communication, Internet,

Facebook, Google, . . .

Design Driver:
universal data compression, data encoding, voiceband modems, CDMA,

multiantenna, discrete denosing, space-time codes, cryptography, . . .



What is Information?

C. F. Von Weizsäcker:

“Information is only that which produces information” (relativity).

“Information is only that which is understood” (rationality)

“Information has no absolute meaning”.

R. Feynman:

“. . . Information is as much a property of your own knowledge

as anything in the message.

. . . Information is not simply a physical property of a message:

it is a property of the message and your knowledge about it.”

J. Wheeler:

“It from Bit”. (Information is physical.)

A. Zeilinger:

. . . reality and information are two sides of the same coin,

that is, they are in a deep sense indistinguishable.



What is Information?

Information has the flavor of:

relativity (depends on the activity undertaken),

rationality (depends on the recipient’s knowledge),

timeliness (temporal structure),

space (spatial structure).

Informally Speaking: A piece of data carries information if it can impact a

recipient’s ability to achieve the objective of some activity within a given

context.
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What is Information?

Information has the flavor of:

relativity (depends on the activity undertaken),

rationality (depends on the recipient’s knowledge),

timeliness (temporal structure),

space (spatial structure).

Informally Speaking: A piece of data carries information if it can impact a

recipient’s ability to achieve the objective of some activity within a given

context.

Engineering ViewPoint:

Information is a measure of distinguishibility.

Example: Boltzmann’s Question:

Among many possible gas molecules (distinguishable) distributions, which

one is the most likely to occur?



Shannon Information . . .

In our setting, Shannon defined:

objective: statistical ignorance of the recipient;

statistical uncertainty of the recipient.

cost: # binary decisions to describe E;

= − logP (E); P (E) being the probability of E.

Context: the semantics of data is irrelevant . . .

Self-information for Ei: info(Ei) = − logP (Ei).
Average information: H(P ) = −∑

i P (Ei) logP (Ei)
Entropy of X = {E1, . . .}: H(X) = −∑

i P (Ei) logP (Ei)
Mutual Information: I(X;Y ) = H(Y )−H(Y |X), (faulty channel).

Shannon’s statistical information tells us how much a recipient of data can

reduce their statistical uncertainty by observing data.

Shannon’s information is not absolute information since P (Ei) (prior

knowledge) is a subjective property of the recipient.



Shortest Description, Complexity

Example: X can take eight values with probabilities:

P = (p1, . . . , p8) = (12,
1
4,

1
8,

1
16,

1
64,

1
64,

1
64,

1
64).

Assign to them the following code:

0, 10, 110, 1110, 111100, 111101, 111110, 111111,

The length of this code L(X) (shortest description):

L(X) =
8

∑

i=1

pili = 2 bits.

and entropy X
H(X) = 2 bits.

In general, if X is a (random) sequence with entropy H(X) and average

code length L(X), then

H(X) ≤ L(X) ≤ H(X) + 1.

Complexity vs Description vs Entropy

The more complex X is, the longer its description is, and the bigger

the entropy is.



Three Theorems of Shannon

How many bits (minimum) you need to describe a file?

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

compression bit rate ≥ source entropy H(X)

for distortion level D:

lossy bit rate ≥ rate distortion function R(D)



Three Theorems of Shannon

How many bits (minimum) you need to describe a file?

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

compression bit rate ≥ source entropy H(X)

for distortion level D:

lossy bit rate ≥ rate distortion function R(D)

How many bits we can communicate reliably over a noisy channel?

Theorem 2. [Shannon 1948; Channel Coding ]

In Shannon’s words:
It is possible to send information at the capacity through the channel

with as small a frequency of errors as desired by proper (long) encoding.

This statement is not true for any rate greater than the capacity.



Typical Sequences

Shannon-McMilan-Breiman:

− 1
n logP (Xn

1 ) → H(X) = −E[logP (X)]

H(X) is the entropy rate.

Code Length :

⌈− logP (Xn
1 )⌉ ∼ nH(X).



Typical Sequences

Shannon-McMilan-Breiman:

− 1
n logP (Xn

1 ) → H(X) = −E[logP (X)]

H(X) is the entropy rate.

Code Length :

⌈− logP (Xn
1 )⌉ ∼ nH(X).

Decoding Rule: Declare that sequence sent X is the one that is jointly

typical with the received sequence Y provided there is unique X satisfying

this property!



Capacity of BSC

Capacity:

I(X; Y ) = H(Y ) − H(Y |X)

= H(Y ) − H(p)

≤ 1 − H(p).

The capacity is achieved for the uniform input distribution. Thus

C = 1 − H(p).
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Shannon Information vs Science of Information

Claude Shannon laid the foundation of information theory, demonstrating

that problems of data transmission and compression (i.e., reliably

reproducing data) can be precisely modeled formulated, and analyzed.

SCIENCE OF INFORMATION builds on Shannon’s principles to address

key challenges in understanding information that nowadays is not only

communicated but also acquired, curated, organized, aggregated,

managed, processed, suitably abstracted and represented, analyzed,

inferred, valued, secured, and used in various scientific, engineering, and

socio-economic processes



Shannon Information vs Science of Information

Claude Shannon laid the foundation of information theory, demonstrating

that problems of data transmission and compression (i.e., reliably

reproducing data) can be precisely modeled formulated, and analyzed.

SCIENCE OF INFORMATION builds on Shannon’s principles to address

key challenges in understanding information that nowadays is not only

communicated but also acquired, curated, organized, aggregated,

managed, processed, suitably abstracted and represented, analyzed,

inferred, valued, secured, and used in various scientific, engineering, and

socio-economic processes

Gergor Cantor (1845-1918):

“In re mathematica ars proponendi questionem pluris

facienda est quam solvendi”

(In mathematics the art of proposing a question

must be held of higher value than solving it.)



Post-Shannon Challenges

Classical Information Theory needs a recharge to meet new challenges of

nowadays applications in biology, modern communication, knowledge

extraction, economics and physics, . . . .

We need to extend Shannon information theory to include new aspects

of information such as:

structure, time, space, and semantics ,

and others such as:

dynamic information, limited resources, complexity, physical information,

representation-invariant information, and cooperation & dependency.



Outstanding Challenges in Science of Information

The most pressing challenge of our times is the data deluge and the

transformation from data to information, and subsequently to knowledge.

data → information → knowledge



Outstanding Challenges in Science of Information

The most pressing challenge of our times is the data deluge and the

transformation from data to information, and subsequently to knowledge.

data → information → knowledge

1. Easy Questions: How much unique data?

Increasingly data is not in the form of text – social networks,

tweets, scientific data (interactions, geometries, time series), economic

transactions, etc.

2. Harder Questions: How do we quantify this data, how do we extract

information from these datasets?

3. Really Hard Questions: Information has cause and consequence – How

do we reach beyond information? How do we act on this information?
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Channel with Constrained Input

In many real applications (such as digital recording and biology), input

sequence must satisfy some constrains such as (d, k) sequences:

No sequence contains a run of zeros shorter than d or longer than k.

Digital Recording such as CD, DVD, and Blu-ray:

An unconstrained sequence of 1’s and 0’s is not acceptable in practice.

since a long run of 0’s results in loss of synchronization. Therefore,

constrained (d, k) sequences are used to improve the performance.

Neuronal Spike

Current technology allows for the simultaneous recording of the spike trains

from one hundred different neurons in the brain of a live animal. But

refractoriness requires that a neuron cannot fire two spikes in too short a

time, thus constrained (d, k) sequences arise.
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Sd,k = {(d,k) sequences}.

Sequence X ∈ S(d,k) is a MARKOV PROCESS of order k.



Noisy Constrained Channel

Let S denote the set of binary constrained sequences of length n. Here:

Sd,k = {(d,k) sequences}.

Sequence X ∈ S(d,k) is a MARKOV PROCESS of order k.

Capacity:

C(S, ε) – noisy constrained capacity defined as

C(S, ε) = sup
X∈S

I(X; Y ) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(Xn
1 , Y

n
1 ).

This was an open problem.1

1In 2004 Marcus at al. stated: “. . . while calculation of the noise-free capacity of constrained sequences

is well known, the computation of the capacity of a constraint in the presence of noise . . . has been an

unsolved problem in the half-century since Shannon’s landmark paper . . ..”



Entropy of Hidden Markov Process

Hidden Markov Process: Since

I(X; Y ) = H(Y ) − H(Y |X) = H(Y ) − H(ε)

Process Y is a Hidden Markov Process (HMP) since it is a noisy version of

the Markov Process X .

Entropy of HMP H(Y ) was first investigated by Blackwell in 1956.

We proved that H(Y ) is equal to the so called top Lyapunov exponent

which is hard to compute.
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Y for small ε is
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for explicitly computable f0(P ) and f1(P ).



Entropy of Hidden Markov Process

Hidden Markov Process: Since

I(X; Y ) = H(Y ) − H(Y |X) = H(Y ) − H(ε)

Process Y is a Hidden Markov Process (HMP) since it is a noisy version of

the Markov Process X .

Entropy of HMP H(Y ) was first investigated by Blackwell in 1956.

We proved that H(Y ) is equal to the so called top Lyapunov exponent

which is hard to compute.

We now assume that P (error) = ε → 0 is small!

Theorem 1 (Jacquet, Seroussi, and Szpankowski, 2008). The entropy rate of

Y for small ε is

H(Y ) = H(X) − f0(P )ε log ε + f1(P )ε + o(ε)

for explicitly computable f0(P ) and f1(P ).

Example 1: Consider P =

[

1 − p p

1 0

]

which represents (0, 1) ≡ (1,∞)

constraint sequence. Then

H(Y ) = H(P ) − p(2 − p)

1 + p
ε log ε + O(ε).



Capacity of the Noisy Constrained Channel

Theorem 2 (Jacquet & Szpankowski, 2010). The capacity of the noisy

constrained channel is

C(S, ε)=C(S)−(1 − f0(P
max

))ε log ε+(f1(P
max

) − 1)ε + o(ε)

where C(S) is the capacity of noiseless system (ε = 0)



Capacity of the Noisy Constrained Channel

Theorem 2 (Jacquet & Szpankowski, 2010). The capacity of the noisy

constrained channel is

C(S, ε)=C(S)−(1 − f0(P
max

))ε log ε+(f1(P
max

) − 1)ε + o(ε)

where C(S) is the capacity of noiseless system (ε = 0)

Example 2. Consider the (1,∞) ≡ (0, 1) constraint (at most one 0

between any two 1s) with transition matrix as in Example 1. Then

f0(PX) =
p(p − 2)

p − 1
,

The noisy constrained capacity is obtained for:

p = 1/ϕ2, where ϕ = (1 +
√
5)/2, (the golden ratio). Then

C(S, ε) = C(S) + +(1 − 1/
√
5)ε log(ε) + O(ε)

= logϕ + (1 − 1/
√
5)ε log(ε) + O(ε)

for ε → 0.
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2 F. Brooks. jr “We have no theory however that gives us a metric for the information embodied in structure

. . .



Graphs with Locally Correlated Labels

How many bits are required to describe the unlabeled graph on the left,

and how many additional bits one needs to represent the correlated labels

on the right?



The Real Stuff ...

Figure 1: Protein-Protein Interaction Network with BioGRID database



Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model S of a graph G is defined for an unlabeled version.

Some labeled graphs have the same structure.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

Graph Entropy vs Structural Entropy:

The probability of a structure S is: P (S) = N(S) · P (G)

where N(S) is the number of different labeled graphs having the same

structure.

HG = E[− logP (G)] = −
∑

G∈G
P (G) logP (G), graph entropy

HS = E[− logP (S)] = −
∑

S∈S
P (S) logP (S) structural entropy



Relationship between HG and HS

d e

b c

a

Graph Automorphism: For a graph G its

automorphism Aut(G) is adjacency preserving

permutation of vertices of G.

HS = HG − logn! +
∑

S∈S
P (S) log |Aut(S)|,

automorphism group of S.
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with n vertices edges are chosen independently with probability p. That is,
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and Kim, Sudakov, Vu (2006) prove that for such graphs

P (Aut(G) = 1) = 1 − o(1).



Relationship between HG and HS

d e

b c

a

Graph Automorphism: For a graph G its

automorphism Aut(G) is adjacency preserving

permutation of vertices of G.

HS = HG − logn! +
∑

S∈S
P (S) log |Aut(S)|,

automorphism group of S.

Erdös-Rényi Graph Model: Such a graph G(n, p)
with n vertices edges are chosen independently with probability p. That is,

P (G) = p
k
((1 − p)(

n
2)−k

and Kim, Sudakov, Vu (2006) prove that for such graphs

P (Aut(G) = 1) = 1 − o(1).

Theorem 3 (Choi and Szpankowski, 2012). For large n and all p satisfying
lnn
n ≪ p and 1 − p ≫ lnn

n (i.e., the graph is connected w.h.p.),

HS =
(n

2

)

h(p)−logn!+O

(

logn

na

)

=
(n

2

)

h(p)−n logn+n log e+O(log n), a > 1

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.



Structural Zip (SZIP) Algorithm



Asymptotic Optimality of SZIP for Erdös-Rényi Graphs

Theorem 4 (Y. Choi and W. Szpankowski, 2012). Let L(S) = |B̃1| + |B̃2| be

the code length.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where c is an explicitly computable constant, and Φ(x) is a fluctuating

function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.



Asymptotic Optimality of SZIP for Erdös-Rényi Graphs

Theorem 4 (Y. Choi and W. Szpankowski, 2012). Let L(S) = |B̃1| + |B̃2| be

the code length.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where c is an explicitly computable constant, and Φ(x) is a fluctuating

function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991

Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488

Collaboration (Geometry) 6,167 21,535 115,365 19,012, 861 55 9,910 241,811

Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377

Genetic interaction (Human) 8,605 26,066 221,199 37,0 18,710 729,848 310,569

Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060



Analytic Information Theory

• In the 1997 Shannon Lecture Jacob Ziv presented compelling

arguments for “backing off” from first-order asymptotics in order to

predict the behavior of real systems with finite length description.

• Following Hadamard’s precept3, we study information theory problems

using techniques of complex analysis4 such as generating functions,

combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,

sequences distributed modulo 1, saddle point methods, analytic

poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to information

theory, constitutes analytic information theory.

3The shortest path between two truths on the real line passes through the complex plane.
4Andrew Odlyzko argued that: “Analytic methods are extremely powerful and when they apply, they

often yield estimates of unparalleled precision.”
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