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Discrete Memoryless Channel
Discrete Channel
Input alphabet 𝓧
Finite  output  alphabet  𝓨

W
x ∈ 𝓧   y ∈ 𝓨

y  ~  W(  ∙  |  x)  

0.1 0.4 0.2 0.3
0.4 0.1 0.3 0.2

0
1

a       b       c      d

Memoryless channels: 
Channel’s behavior on i’th bit 
independent of rest



Noisy Coding theorem
[Shannon’48] Every discrete memoryless channel W has a 
capacity  I(W) such that one can communicate at asymptotic 
rate  I(W) - ε with vanishing probability of 
miscommunication      (for any desired gap to capacity ε > 0)

Conversely, reliable communication is not possible at rate I(W)+ε.

Asymptotic rate: Communicate (I(W)-ε)N bits in N uses of the 
channel in limit of large block length  N
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Shannon’s Theorem

Shows that (if channel isn’t completely noisy) 
constant factor  overhead suffices for 
negligible  decoding error probability, 
provided we tolerate some delay

•Delay/block length N ≈ 1/ε2 suffices 
for rate within ε of capacity

•Miscommunication prob. ≈ exp(-ε2 N) 



Binary Memoryless Symmetric (BMS) channel
• 𝓧= {0,1}  (binary inputs)
• Symmetric 

- Output symbols can be paired up {y,y’} such that W(y|b) = W(y’|1-b)

Most important example: 
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BSCp (binary symmetric channel with crossover probability p)



Capacity of BMS channels
Denote H(W) := H(X|Y) 

where X ~ U{0,1} ; Y ~ W ( ·|X)

Shannon capacity I(W) = 1 - H(W)

Two well-known examples
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Capacity = 1 - h(p) Capacity = 1 - α

BSCp BECα



Realizing Shannon

•Shannon’s theorem non-constructive
-  random codes, exponential time decoding 

★Challenge: Explicit coding schemes with efficient 
encoding/decoding algorithms to communicate at 
information rates ≈ capacity 

‣  Has occupied coding & information theorists for 60+ years



“Achieving” capacity
In the asymptotic limit of large block lengths N, 
not hard to approach capacity within any fixed ε > 0
✦  Code concatenation (Forney’66)

rate ≈ 1 - ε outer code, 
can correct a positive frac.
of worst-case errors

B bits B ≈ε-2

Ensemble of inner codes
of rate ≈ capacity - ε 

Decoding time ≈ N exp(1/ε2)   
(brute force max. likelihood decoding of inner blocks)

Complexity scales poorly with gap ε to capacity



Achieving capacity:
A precise theoretical formalism 

•  ∀ msg. m, Pr [ Dec(W(Enc(m))) ≠ m ] ≪ ε  (say ε100)

•  Block length N ≤ poly(1/ε) 

•  Runtime of Enc and Dec  bounded by poly(1/ε) 

Given channel W and desired gap to capacity ε, 
Construct  Enc : {0,1}RN → {0,1}N  & Dec : {0,1}N → {0,1}RN    

for rate R = I(W) - ε  such that

That is, seek complexity polynomially bounded 
in single parameter,  gap ! to capacity



Our Main Result
Polar codes [Arikan, 2008] give a solution to this challenge

Deterministic polytime constructible binary linear codes 
for approaching capacity of BMS channels W within ε 
with complexity O(N log N) for N ≥ (1/ε)c

‣  c = absolute constant independent of W
‣  Decoding error probability exp(-N0.49)

✦ The first (and so far only) construction to achieve capacity with 
such a theoretically proven guarantee. 
✦ Provides a complexity-theoretic basis for the statement
``polar codes are the first constructive capacity achieving codes”
 



Other “capacity achievers” 
• Forney’s concatenated codes (1966)

- Decoding complexity exp(1/ε) due to brute-force inner decoder   

• LDPC codes + variants (Gallager 1963, revived ~ 1995 onwards)

- Proven to approach capacity arbitrarily closely only for erasures 

- Ensemble to draw from, rather than explicit codes

• Turbo codes (1993) 
- Excellent empirical performance. Not known to approach 

capacity arbitrarily closely as block length N → ∞

• Spatially coupled LDPC codes (Kudekar-Richardson-Urbanke, 2012)

- Asymptotically achieves capacity of all BMS channels! 

- Polynomial convergence to limit not yet known



Weren’t polar codes already shown to 
achieve capacity?

• Yes, in the limit of large block length
‣ Can approach rate I(W) as N → ∞ [Arikan]

• We need to bound the speed of convergence to capacity
‣ Block length N=N(ε) needed for rate I(W)-ε ?

• We show N(ε) ≤ poly(1/ε)

‣ Mentioned as an open problem, eg. in [Korada’09; Kudekar-Richardson-
Urbanke’12; Shpilka’12; Tal-Vardy’13]

‣ Independently shown in [Hassani-Alishahi-Urbanke’13] 



Finite length analysis

• Asymptotic nature of previous analyses due to use of 
convergence theorem for supermartingales

• We give an elementary analysis, leading to effective 
bounds on the speed of convergence



Roadmap

•Polarizing matrices & capacity-achieving codes

•Arikan’s recursive polarizing matrix construction  

•Analysis: Rough polarization 

•Remaining issues, fine polarization 



Source coding setting & Polarization
C is the kernel of a (1-R)N x N 

parity check matrix HN:   
             C = { c ∈ {0,1}N : HN c = 0 }

Focus on BSCp. 
Suppose C ⊂ {0,1}N  is a 
linear code of rate R ≈ 1- h(p)

C is a good 
channel code for BSCp

HN gives a optimal lossless source code 
for compressing Bernoulli(p) source:

⟺

• x0 x1 …. xN-1  i.i.d samples from source X = Bernoulli(p)
• They can be recovered w.h.p from ≈ h(p)N  bits HN(x0 x1 …. xN-1)T 

If we complete the rows of HN  to a basis, 
resulting N x N invertible matrix 

PN is ``polarizing’’ 



Coding needs Polarization

Polarizing matrices are implied by linear capacity-achieving codes

Invertible
Matrix

PN

X0 Source coding setting 
•X0 X1 …. XN-1  i.i.d copies of  X
‣ (For general channel coding, work with 
conditional r.v’s Xi | Yi + handle some subtleties)

X1

XN-1

U0

UN-1

U1

PN  has the following polarizing property:



Insights in Polar Coding

1. Sufficiency of such matrices 
‣ No need to output Ui for good indices i (when H(Ui|U0...Ui-1) ≈ 0)

2. Recursive construction of polarizing matrices, 
 along with low-complexity decoder

Polarizing 
Invertible

Matrix

X0
X1

XN-1 UN-1

U1
U0



2 x 2 polarization

Suppose X ~ Bernoulli(p) 

H(U0) =  h(2p(1-p)) 
H(U1 | U0) =  2h(p) - H(U0) 

> h(p)      (unless h(p)=0 or 1)
<  h(p)

If X is not fully deterministic or random, the output 
entropies are separated from each other



An explicit polarizing matrix [Arikan]

(for N = 2n ) 

n=2



 Recursive Polarization
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(V0, V1) & (T0, T1) i.i.d 
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General recursion

G2 U2i+1
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Ti
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Bn = bit reversal permutation



Proof idea

Abstracting each step in recursion:

Channel = pair W of (correlated) random variables (A;B)  (with A ∈ {0,1} )

‣ Given a channel W = (A; B)         
‣ Take two  i.i.d copies (A0; B0) and (A1; B1) of W
‣ Output two pairs W− = (A0+A1; B0,B1) and W+ =(A1; A0+A1,B0,B1) 

•  Channel entropy H(W) = H(A|B) 

Channel splitting
W

W− W+

H(W−) + H(W+) = 2 H(W)
H(W+) ≤ H(W) ≤ H(W−)  

G2
A0+A1

A1
A0
A1



Channels produced by recursion

W

W− W+

W−− W−+ W+− W++

W−−−⋯− W−++⋯− W+++⋯+….

Input = 2n  i.i.d copies of W (= (X; 0) where X is the source, H(W) = H(X))
The channels at various levels
of recursion evolve as follows:

Therefore, 
H(Ui|U0,U1, …, Ui-1) = H(W              )



Polarization: Asymptotic Analysis
W

W− W+

W−− W−+ W+− W++

W−−−⋯− W−++⋯− W+++⋯+….

Consider random walk down the tree, 
moving left/right randomly at each step

Let Hn be the r.v. equal to entropy
of the channel at depth n.

‣ H0, H1, H2, …. is a bounded martingale

⟹ Converges almost surely to a r.v. H∞  (martingale convergence theorem)

Only fixed points for entropy 
evolution H(W) →H(W−) are 0,1 
(deterministic/fully noisy channels)

H∞ is {0,1}-valued



Entropy increase lemma
[Sasoglu] If H(W) ∈ (δ,1-δ) for some δ > 0, then 

H( W−) ≥ H(W) + γ(δ)  for some γ(δ) > 0

If (X1,Y1), (X2,Y2) are i.i.d with Xi ∈ {0,1} & H(Xi |Yi) ∈ (δ,1-δ), then
H(X1+X2|Y1,Y2) ≥ H(X1|Y1) + γ(δ) 

That is,

Note: We saw this for Xi ~ Bernoulli(p) (without any Yi) earlier.
‣ h(2p(1-p)) > h(p) unless h(p) ∈ {0,1}



Polarization: A direct analysis
Lemma: There is a Λ < 1 such that for all “channels” W 

Corollary: n = O(log (1/ε)) recursive steps (and thus N=poly(1/ε)) 
suffice for   Pr[Hn(1-Hn) ≥ε] ≤ ε         (and ∴ Pr[Hn ≤ ε]  ≥ 1-H(X)-ε)
‣ rough polarization 

Proof of Lemma has two steps:

1. H(W−) − H(W) ≥ θ H(W)(1-H(W))  for some θ > 0 
• quantitative version of “entropy increase lemma”

2. Use 1. + calculations to deduce (✺)

(✺)



Polarization to (source) codes 
Invertible polarizing map 
X0N-1 → U0N-1To compress (encode) X0N-1

‣ output Ui , i ∉ Good where Good = { i | H(Ui | U0i-1) < δ }

To decompress (decode): For i=0,1,…, N-1,
‣ If i ∉ Good, we know Ui from the encoder 
‣ If i ∈ Good, set Ui to more likely bit (based on estimated prefix U0i-1)

‣(this can be efficiently computed based on the recursive construction) 

∴Prob. that decoder doesn’t recover U0N-1 (and thus X0N-1) 
correctly ≤ 

✴ Would like δ ≪ 1/N

Prob[decoder is incorrect on Ui, given correct U0i-1] ≤ H(Ui | U0i-1) < δ 



Getting a code: Issues 

1. for N ≤ poly(1/ε) 

2. with efficient computation of the set Good

Have polarization, but still need:

H(Ui | U0i-1) ≪ 1/N for a subset Good of ≈ (1-H(X)-ε)N 
indices i   (ε = gap to capacity)



Amplifying to fine polarization

Rough polarization
≈ 1-H(X)-ε entropies < ε 

      Fine polarization
Most paths drive down conditional 

entropies at leaves to very small values

Give up on rest (red nodes)

Recall: we’d like 1-H(X)-ε frac. of Hn’s to be ≪ 1/N = 2-n    

(to survive union bound)

High level structure of analysis



Rapid polarization of near-zero entropies
To get adequate decrease in Hn, track the 
Bhattacharyya parameter Z(W) of various channels

Lemma [Arikan]:  Z(W+) = Z(W)2

         Z(W−) ≤ 2 Z(W)

Quadratically tied to entropy: Z(W)2  ≤ H(W) ≤ Z(W)

Rapid improvement in the 
better (+) channel !



Rapid polarization of near-zero entropies
Fix β  < ½. In an n-long path down the tree, 
w.h.p Z-parameter squares > βn  times.
Thus, w.h.p

Zn ⪅ exp(-2βn) = exp(-Nβ) 
(after some care to handle the doublings)

W

W− W+

W−− W−+ W+− W++

W−−−⋯− W−++⋯− W+++⋯+….
Rough polarization

≈ 1-H(X)-ε entropies < ε 

      Fine polarization
Most paths in green subtrees are good, 

ending at leaves with 
very small conditional entropies

Give up on rest (red nodes)



Computing the good channels
Fine polarization (driving down entropy of good channels):
✓can explicitly pick paths with 
   roughly balanced + and − branches

Rough polarization (first O(log (1/ε) steps):
‣  (Approximately) compute the entropies?

Challenge: Combat increase in output alphabet size
✦ (A;B) ➡ (A0 + A1 ; B0,B1) squares size of B-space

Idea: Slightly degrade channel by merging output symbols
(to reduce output alphabet size after each recursive step)

‣ Originally proposed by [Tal-Vardy],
    variants analyzed in [Pedersani-Hassani-Tal-Teletar]

Rough

Fine



Concluding remarks 
•  Exponent μ in N(ε) = O(1/εμ )  in our analysis likely 

much larger than the empirical suggestion μ ≈ 4 [Korada-
Montanari-Teletar-Urbanke]

- “Lower bound” of ≈ 3.55 on μ [Goli-Hassani-Urbanke]

• Extend to larger alphabets? 

• Connections to binary Reed-Muller codes?


