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f(x,y) == x/y
Examples:
e f(1,1)=1=1(2,2)
o f(1,2) =12
e f(2,1)=2

Now you know long division. I

f(x,y) = x/y is the uniquely determined by
the above, as a function of the form
f(x,y) = (ax+ b)/(cy + d). O
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Simple functions are essentially determined by sufficiently many random

samples.

@ PAC (Probably Approximately Correct) learning
@ Error-correcting Codes

o (Black-box) Polynomial Identity Testing (PIT) — given an algebraic
circuit C, does the polynomial C(X) equal zero?
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More on the Theme

Meta-hope

Simple functions are essentially efficiently determined by deterministic
samples.

Example (of hope)

@ Coding theory: need deterministic coding schemes for
communication

o Complexity theory: understanding the power of (pseudo)randomness

@ Complexity theory: connections with circuit lower bounds
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Bilinear Forms

Let F be a field. Let M be an n x n matrix. Define f : F" x F" — T by

f(%,y) = XMy = (M,£'y)

How many queries to f do we need to determine if f = 07 To learn M ? I

n? are sufficient, as f(&, &) = M; .

n? are necessary, by counting.
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Bilinear Forms — Low Rank

Let IF be a field. Let M be an n x n matrix of rank < r. Define
f:F"xF" =T by f(X,y) = XMy = (M, x'y)

How many queries to f do we need to determine if f = 07 To learn M ? I

~ 2nr (resp. =~ 4nr) are sufficient, by the probabilistic method and
Schwartz-Zippel

©(nr) are necessary, by counting. I

Can we construct =~ 2nr (resp. 4nr) explicit samples for identity testing
(resp. learning)?
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Definition

Let X € F” be an unknown vector. A measurement of X is an inner
product (3, X) for some known vector 3 € F". A measurement of an
unknown matrix M is an inner product in the space F™ . A measurement
(A, M) of the matrix M is rank 1 if A is rank 1.

Thus, evaluations to the bilinear form f(x, y) = X*My = (x'y, M) are all
rank-1 measurements of M.

Over large fields, one can efficiently learn an n x n matrix of rank < r with
4nr measurements and can even be done with rank-1 measurements.

The number of measurements is optimal over algebraically closed fields.
The use of rank-1 measurements is novel, and thus instantiates the
meta-hope, by learning a function from deterministic evaluations.
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Definition (Tensor)

o A tensor is a higher dimensional matrix in [n].

@ Tensors have a rank, dnr parameters for tensors of rank r, but n? in
general.

@ Tensors define a d-linear form, evaluating that form is a rank-1
measurement of the tensor.

| \

Theorem

There is a deterministic poly(n, r,d)'°®?-time algorithm that reconstructs
rank r tensors in [n]¢ from evaluations of their d-linear forms.

This is the first deterministic sub-exponential time algorithm for even
determining if the d-linear form is non-zero, by only using its evaluations.
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Results — Low-Rank Recovery

Any r-sparse-recovery oracle with measurements ) can be turned into a
rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

An r-sparse-recovery oracle is simply an error-correcting-code with that
can correct r errors (thus, distance 2r)

= take the Reed-Solomon code with 2r measurements (for large fields).
— get 2n - 2r = 4nr measurements

rank 1 measurements: do a clever change of basis from H to H’
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Sparsity and Rank (1)

want: M has rank < r = related r sparse vector.
hope: some row or column of M is sparse. (false)
a new hope: the some diagonal of M is sparse.

Definition

Let M be n x n. The k-diagonal of M are the entries { M j}i}j—«.

Let M be n x n, of rank < r. The first non-zero diagonal is r-sparse.
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Proof by example.

_ - The rows with non-zeros
0 00 0 a +« x «% s
amongst the entries a, b, ¢, d, e
0 00 b x  x % . . )
are linearly independent, as this
0 0 ¢  * *x x * ; . .
is a triangular system, so this
0 d » * * * *x * ;
follows from standard linear
€ *x x *x Kk x K *
algebra.
* Kk Kk Kk Kx Kk x *
* Kk ok Kk x Kk x *
[x *x k k ok Kk Kk K
v

13/17



Sparsity and Rank (11)
Let M be n x n, of rank < r. The first non-zero diagonal is r-sparse. l

Proof by example.

- The rows with non-zeros
amongst the entries a, b, ¢, d, e
are linearly independent, as this
is a triangular system, so this
follows from standard linear
algebra. So if the rank is at
most 3,

¥ ¥ * © O O O O
¥ % * % Q O OO
* % * * * 0 OO
+ ok F F o+ ¥ T O
ok ok ok F o of
F ok ok ok F F of
ok ko ok ok ¥ oF

* O X ok X X o L

13/17



Sparsity and Rank (11)
Let M be n x n, of rank < r. The first non-zero diagonal is r-sparse. l

Proof by example.

- The rows with non-zeros
amongst the entries a, b, ¢, d, e
are linearly independent, as this
is a triangular system, so this
follows from standard linear
algebra. So if the rank is at
most 3, then this diagonal is
3-sparse.

¥ ¥ * © O O O O
¥ % * % Q O OO
* % * * * 0 OO
+ ok F F o+ ¥ T O
ok ok ok F o of
F ok ok ok F F of
ok ko ok ok ¥ oF

* O X ok X X o L

13/17



Proof of Low-Rank Recovery

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

00000O0O
0001111
0011001
0111011
0123123
0123123
01231 2 3]

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

00000O0O r 7
0001111
0011001
0111011
0123123
0123123
01231 2 3]

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

0000O0OODO B 7
0001111 :

0011001

0111011

0123123

0123123

0 1 2 3 1 2 3]

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

000000O0O 0 B :
0001111

0011001 ?

0111011

0123123

0123123

01231 2 3]

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

0000000 0 o B 7
0001111

0011001 0

0111011 2

0123123

0123123

012312 3

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

00000O0UO 0 o0 o B .
0001111

0011001 o 0 7
0111011 0

0123123 5

0123123 :

01231 2 3]

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

000O0O0GO OO 0 o0 o o 3 1
0001111

0011001 c 0 0 ?
0111011 o 0 7
0123123 o 2

0123123

0 1 2 3 1 2 3] [

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

0000O0GO0O 0 o o0 o o @ 1
0001111
0011001 o 0 0 1 /7
0111011 o o0 1 |2
0123123 o 1 2
0123123
01 2 3 1 2 3] 0o 7

?

14 /17



>
|
(D]
>
(@)
O
(D)
o
-~
c
(g}
o
1
=
(@)
—
[
(@)
(T
(@)
(©)
=
o

, essentially using 3-sparse recovery:

rank < 3 matrix

Learning an 7 x 7,

0 0 0 0 0 O O]

0001111
0011001
0111011
0123123
0123123
0123123

0
1
-1
1
0
0
0

0

1
-1

[0 0 0 O

0 001

0 010

0
0
0
0

0100
0 00O
0 00O
0 00O

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

O OO OO oo

O OO OO oo

e S Y e M e N

[N elNell oo Ne]

N NN R PP OO

OO OO+ OO

W W wWwWwHERFE~=O

OO OO oo

_ =2 OO~ O

NNNRFER O~ O

W W wrERFkRFE O

[l elelNeoNoll o]

0 0 0 0 0 ?
0 0 0 1 ?

0 0 1 ?

0 1 ?

0 ?

?

Given a row-reduced upper part of
M, the next diagonal is essentially
3-sparse.

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

O OO OO oo

O OO OO oo

e S Y e M e N

[N elNell oo Ne]

N NN R PP OO

OO OO+ OO

W W wWwWwHERFE~=O

OO OO oo

_ =2 OO~ O

NNNRFER O~ O

W W wrERFkRFE O

[l elelNeoNoll o]

0 0 ?
1 7
7

~N O O O O o o
~N = = O O O

N = = O O

N = = O

Given a row-reduced upper part of
M, the next diagonal is essentially
3-sparse.

14 /17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

O OO OO oo

O OO OO oo

e S Y e M e N

[N elNell oo Ne]

N NN R PP OO

OO OO+ OO

W W wWwWwHERFE~=O

OO OO oo

_ =2 OO~ O

NNNRFER O~ O

W W wrERFkRFE O

OO o

[l elelNeoNoll o]

0 0 0 0 0 ?
0 0 1 1 7

0 1 1 7

1 1 ?

1 ?

?

~N O O O o o o

Given a row-reduced upper part of

M, the next diagonal is essentially
3-sparse. The effect of

(downward) row-reduction on the
measurements can be offset. 1417



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

O OO OO oo

O OO OO oo

e S Y e M e N

[N elNell oo Ne]

N NN R PP OO

OO OO+ OO

W W wWwWwHERFE~=O

OO OO oo

_ =2 OO~ O

NNNRFER O~ O

W W wrERFkRFE O

OO o

[l elelNeoNoll o]

0 0 0 0 0 0 ?
0 0 0 1 1 7

0 0 1 0 7

0 1 0 ?

0 0 7

0 7

7

Given a row-reduced upper part of

M, the next diagonal is essentially
3-sparse. The effect of

(downward) row-reduction on the
measurements can be offset. 1417



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

O OO OO oo

O OO OO oo

e S Y e M e N

[N elNell oo Ne]

N NN R PP OO

OO OO+ OO

W W wWwWwHERFE~=O

OO OO oo

_ =2 OO~ O

NNNRFER O~ O

W W wrERFkRFE O

OO o

[l elelNeoNoll o]

0o 0 O 0 0 0 0
0 0 O 1 1 1 7
0 0 1 o -1 7

0o 1 0 0 7

0 0 1 ?

o 1 7

0 7

Given a row-reduced upper part of

M, the next diagonal is essentially
3-sparse. The effect of

(downward) row-reduction on the
measurements can be offset. 1417



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

O OO OO oo

O OO OO oo

e S Y e M e N

[N elNell oo Ne]

N NN R PP OO

OO OO+ OO

W W wWwWwHERFE~=O

OO OO oo

_ =2 OO~ O

NNNRFER O~ O

W W wrERFkRFE O

OO o

[l elelNeoNoll o]

0o 0 O 0 0 0 0
0 0 O 1 1 1 7
0 0 1 o -1 7

0o 1 0 0 7

0o 0 O ?

o 0 7

0 7

Given a row-reduced upper part of

M, the next diagonal is essentially
3-sparse. The effect of

(downward) row-reduction on the
measurements can be offset. 1417



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 O] 0 0 0 o0 0 0 0
0001111
0011001 oo o 1 1 1 1
0111011 o o 1 o0 -1 -1 B
0123123

1 ?
0123123 0 0 0 0
012312 3 o 0 0 2 |2
- } o o0 2 7
0000 O O O -
0001 1 1 1 _0 1 7 _
0010 -1 -10 _
0100 O 1 O Given a row-reduced upper part of
0000 0 0 ol M. thenextdiagonalis essentially
0000 0 o o 3sparse Theeffect of
0000 O 0 O (downward) row-reduction on the

measurements can be offset. 1417



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 O] 0 0 0 o0 0 0 0
0001111
0011001 o 0 0o 1 1 1 1
0111011 o o 1 o0 -1 -1 B
0123123

1 ?
0123123 0 0 0 0
01231 2 3 o 0 o0 o [?
- : 0o 0 o0 7
0000 O O O -
0001 1 1 1 _0 0 |7 _
0010 -1 -10 _
0100 O 1 O Given a row-reduced upper part of
0000 0 0 ol M. thenextdiagonalis essentially
0000 0 o o 3sparse Theeffect of
0000 O 0 O (downward) row-reduction on the

measurements can be offset. 1417



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 0] 0 0 0 0 0 0 0
0001111

0011001 o o 0 1 1 1 1
0111011 o 0o 1 0o -1 -1 0
0123123 6 1 0 0 0 . 5
0123123

0 1 2 3 1 2 3] 0 0 0 O 0 ?

- i} 0O 0 o0 3 ?

0000 O OO -

ooo1 1 1 1| |0 0O 2 [ _
0010 -1 -10 _

0100 0 1 0 Given a row-reduced upper part of
0000 O 0 0 M, the next diagonal is essentially
0000 0 0o ol B3sparse Theeffect of

0000 O 0 O (downward) row-reduction on the

measurements can be offset. 14/17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 0] 0 0 0 0 0 0 0
0001111

0011001 o 0 0 1 1 1 1
0111011 o o 1 0 -1 -1 0
0123123 o 1 0 o0 o . 5
0123123

0 1 2 3 1 2 3] 0 0 0O 0 o ?

- _ 0 0 0 O ?

0000 O O O -

0001 1 1 1| | 0 0 0 |7 _
0010 -1 -10 _

0100 0 1 0 Given a row-reduced upper part of
0000 O 0 0 M, the next diagonal is essentially
0000 0 0o ol B3sparse Theeffect of

0000 O 0 O (downward) row-reduction on the

measurements can be offset. 14/17



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 0] 0 0 0 0 0 0 0

0001111

0011001 o o 0 1 1 1 1

0111011 o 0 1 0 -1 -1 0

01 23123 0 1 0 0 0 . 0

01 23123

01231 2 3] o0 0 0 0 o [?
0 0 0 O 0 ?

[0 0 00O 0 0 0] .

0001 1 1 1 _0 0 0 3 7 _

0010 -1 -1 0 _

01 00 O 1 0 Given a row-reduced upper part of

0000 0 0 ol M. thenextdiagonalis essentially

0000 0 0 o 3sparse The effectof

0000 0 o ol (downward)row-reduction on the

measurements can be offset. e



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 0] 0 0 0 0 0 0 0

0001111

0011001 o o 0 1 1 1 1

0111011 o 0 1 0 -1 -1 0

01 23123 0 1 0 0 0 . 0

01 23123

01231 2 3] o0 0 0 0 o [?
0 0 0 O 0 ?

[0 0 00O 0 0 0] .

0001 1 1 1 _0 0 0 0 7 _

0010 -1 -1 0 _

01 00 O 1 0 Given a row-reduced upper part of

0000 0 0 ol M. thenextdiagonalis essentially

0000 0 0 o 3sparse The effectof

0000 0 o ol (downward)row-reduction on the

measurements can be offset. e



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 O] 0 0 0 0 0 0 0

0001111

0011001 0 0 0 1 1 1

0111011 0o 0 1 0 -1 -1 o0

0123123 o 1 0 0 o ) .

0123123

0123123 0 0 0O 0 ©O 0 0
0 0 0O 0 ©O 0 ?

[0 0 00 0 0 O] 5

ooo01 1 1 1/ [0 0 0O O O [ _

0010 -1 -10 _

01 00 O 1 0 Given a row-reduced upper part of

0000 0 0 ol M. thenextdiagonalis essentially

0000 0 0 o 3sparse The effectof

0000 0 o ol (downward)row-reduction on the

measurements can be offset. e



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 O] 0 0 0 0 0 —
0001111
001 1001 0 0 0 1 1 1
0111011 0o 0 1 0 -1 -1 o0
8 i g 2 i ; 3 o 1. 0 0O O 1 o0
0123123 0 0 0O 0 O 0 0
0 0 0 O o 0 0
[0 0 00 0 0 O]
0001 1 1 1 0o 0 0 0 0 o0 ?
0010 -1 -10 __ -
01 00 O 1 0 Given a row-reduced upper part of
0000 0 0 ol M. thenextdiagonalis essentially
0000 0 0 o 3sparse The effectof
0000 0 o ol (downward)row-reduction on the

measurements can be offset. e



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

[0 0 0 0 0 0 O] 0 0 0 0 0 —
0001111
001 1001 0 0 0 1 1 1
0111011 0 0 1 0 -1 -1 o
8 i g 2 i ; g 0o 1 0 0 0 1 0
0 1.2 3 1 2 3] 0 0 0 0 0 0 O
0 0 0O 0 ©O 0 0
[0 0 00 0 0 O]
0001 1 1 1 0 0 0 0 0 0 O
0010 -1 =10 _- i
01 00 O 1 0 Given a row-reduced upper part of
0000 0 0 ol M. thenextdiagonalis essentially
0000 0 0 o 3sparse The effectof
0000 0 o ol (downward)row-reduction on the

measurements can be offset. e



Proof of Low-Rank Recovery

Learning an 7 x 7, rank < 3 matrix, essentially using 3-sparse recovery:

0 0 0 0 0 0 O]

0001111 00 00 0 0 O
0011001 0001111
0111011 001100 1
0123123 0111011
0123123 01231 2 3

0 12312 3] 0123123
_ ) 0123123
000O0 O O O ) )
0001 1 1 1| Givenarow-reduced upper part of
001 0 —1 —1 0| M,thenextdiagonal is essentially
0100 0 1 o 3-sparse. The effect of
0000 0o o ol (downward)row-reductionon the
0000 O ©0 ofl measurementscan be offset.

0 000 0 0 0

14 /17



Proof of Low-Rank Recovery (cont'd)

15/17



Proof of Low-Rank Recovery (cont'd)

15/17



Proof of Low-Rank Recovery (cont'd)

Any r-sparse-recovery oracle with measurements V can be turned into a
rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ Mrank < r

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse
@ Mrank <r,

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse

@ M rank < r, reduced row-echelon form

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse

@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse

@ M rank < r, reduced row-echelon form = every diagonal is r-sparse
@ Mrank <r,

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse
@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

@ M rank < r, first k diagonals in reduced row-echelon form

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse
@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

@ M rank < r, first k diagonals in reduced row-echelon form —-
(k + 1)-diagonal of M is essentially r-sparse

15/17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

@ M rank < r = the first non-zero diagonal is r-sparse
@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

@ M rank < r, first k diagonals in reduced row-echelon form —-
(k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)

15 /17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a

rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

Proof.

@ M rank < r = the first non-zero diagonal is r-sparse

| N\

@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

@ M rank < r, first k diagonals in reduced row-echelon form —-
(k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)

@ learning M via iteratively learning diagonals and row reducing
(downward)

15 /17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a
rank < r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

Proof.

@ M rank < r = the first non-zero diagonal is r-sparse

| N\

@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

@ M rank < r, first k diagonals in reduced row-echelon form —-
(k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)

@ learning M via iteratively learning diagonals and row reducing
(downward)

@ undo row-reduction at the end

15 /17



Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements V can be turned into a
rank < r low-rank recovery algorithm, with measurements H, and

|H| = 2n|V|.

Proof.

@ M rank < r = the first non-zero diagonal is r-sparse

| N\

@ M rank < r, reduced row-echelon form = every diagonal is r-sparse

@ M rank < r, first k diagonals in reduced row-echelon form —-
(k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)

@ learning M via iteratively learning diagonals and row reducing
(downward)

undo row-reduction at the end

called sparse-recovery 2n times — once per diagonal Ol

15 /17



16 /17



Results:

16 /17



Results:

@ Low-rank recovery of matrices is reducible to sparse recovery of
vectors.

16 /17



Results:
@ Low-rank recovery of matrices is reducible to sparse recovery of
vectors.
@ There is a deterministic quasi-polynomial-time algorithm for learning
low-rank tensors.

16 /17



Results:
@ Low-rank recovery of matrices is reducible to sparse recovery of
vectors.
@ There is a deterministic quasi-polynomial-time algorithm for learning
low-rank tensors.

Open Questions:

16 /17



Results:
@ Low-rank recovery of matrices is reducible to sparse recovery of
vectors.
@ There is a deterministic quasi-polynomial-time algorithm for learning
low-rank tensors.
Open Questions:
@ Can our reduction from low-rank recovery to sparse recovery be made
stable?

16 /17



Results:
@ Low-rank recovery of matrices is reducible to sparse recovery of
vectors.
@ There is a deterministic quasi-polynomial-time algorithm for learning
low-rank tensors.
Open Questions:
@ Can our reduction from low-rank recovery to sparse recovery be made
stable?
@ Deterministic polynomial-time algorithm for learning tensors?

16 /17



TOC

© Title

© Learning Long Division

© Theme

@ Bilinear Forms

© Results

© Results (cont'd)

@ Results — Low-Rank Recovery
© Sparsity and Rank (1)

© Sparsity and Rank (11)

@ Proof of Low-Rank Recovery
@ Proof of Low-Rank Recovery (cont'd)

@ Summary

17/17



	Title
	Learning Long Division
	Theme
	Bilinear Forms
	Results
	Results (cont'd)
	Results — Low-Rank Recovery
	Sparsity and Rank (I)
	Sparsity and Rank (II)
	Proof of Low-Rank Recovery
	Proof of Low-Rank Recovery (cont'd)
	Summary

