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Abstract

Deciphering gene regulatory mechanisms through the analysis of high-throughput expression data is a challenging
computational problem. Previous computational studies have used large expression datasets in order to resolve fine
patterns of coexpression, producing clusters or modules of potentially coregulated genes. These methods typically examine
promoter sequence information, such as DNA motifs or transcription factor occupancy data, in a separate step after
clustering. We needed an alternative and more integrative approach to study the oxygen regulatory network in
Saccharomyces cerevisiae using a small dataset of perturbation experiments. Mechanisms of oxygen sensing and regulation
underlie many physiological and pathological processes, and only a handful of oxygen regulators have been identified in
previous studies. We used a new machine learning algorithm called MEDUSA to uncover detailed information about the
oxygen regulatory network using genome-wide expression changes in response to perturbations in the levels of oxygen,
heme, Hap1, and Co2+. MEDUSA integrates mRNA expression, promoter sequence, and ChIP-chip occupancy data to learn a
model that accurately predicts the differential expression of target genes in held-out data. We used a novel margin-based
score to extract significant condition-specific regulators and assemble a global map of the oxygen sensing and regulatory
network. This network includes both known oxygen and heme regulators, such as Hap1, Mga2, Hap4, and Upc2, as well as
many new candidate regulators. MEDUSA also identified many DNA motifs that are consistent with previous experimentally
identified transcription factor binding sites. Because MEDUSA’s regulatory program associates regulators to target genes
through their promoter sequences, we directly tested the predicted regulators for OLE1, a gene specifically induced under
hypoxia, by experimental analysis of the activity of its promoter. In each case, deletion of the candidate regulator resulted in
the predicted effect on promoter activity, confirming that several novel regulators identified by MEDUSA are indeed
involved in oxygen regulation. MEDUSA can reveal important information from a small dataset and generate testable
hypotheses for further experimental analysis. Supplemental data are included.
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Introduction

Oxygen is critical for the survival and development of virtually

all living organisms. As such, living organisms ranging from yeast

to humans have developed sophisticated mechanisms to respond

to changes of oxygen level in the environment [1]. Several

microarray gene expression studies have been performed in the

yeast model eukaryote Saccharomyces cerevisiae to understand oxygen

sensing and regulation at a genome-wide level [2–6]. However,

most of these studies mainly identified genes responding to low

levels of oxygen [2–6] or determined the DNA-binding sites for

several known oxygen regulators, such as Rox1 [3]. Recently,

there has also been a cluster analysis of expression profiles under

hypoxia and reoxygenation in glucose versus galactose media

[6,7], where the authors looked for enrichment of functional

annotations and known transcription factor binding sites within

gene clusters and also applied existing motif discovery algorithms

to the clusters. These previous microarray studies have provided

further evidence of the role of known regulators such as Hap1,

Rox1, and Upc2, but they have had limited success in identifying

novel components of the oxygen and heme regulatory network.

In this study, we apply an integrative computational approach

to analyze genome-wide changes in expression in response to

perturbations of the oxygen regulatory network. Our approach is

based on a new machine learning algorithm called MEDUSA that

combines information from promoter sequences and gene

expression profiling to learn a quantitative and statistically robust

global model for the oxygen regulatory system. (A mathematical

description of MEDUSA has appeared as an extended abstract in

a conference proceedings [8]). Numerous computational ap-

proaches for inferring gene regulatory networks from gene

expression data have been developed to date [9–20]. We were

motivated by two recent computational approaches in particular:

one algorithm aimed at predicting a gene’s cluster membership

based on the motifs in its promoter [21], and another for

partitioning genes into regulatory modules, i.e., clusters of genes
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with shared regulatory logic [22]. Both these previous methods

depend on clustering genes and describing regulatory logic at the

level of clusters. However, genes with similar expression patterns

are not necessarily regulated by the same regulators and

mechanisms. Thus, in our work, we do not assume that clusters

reflect the full complexity and condition-specific nature of gene

regulation. Indeed, given that virtually all yeast RNA polymerase

II promoters are distinct, it remains to be demonstrated that any

two promoters are regulated identically by the same regulators

across all possible experimental conditions.

In contrast to these previous approaches, the MEDUSA

algorithm aims to predict the condition-specific differential

expression of individual genes, not clusters of genes, by using a

single global model. It integrates promoter sequence, promoter

occupancy data from ChIP-chip experiments, and the expression

levels of potential regulators, including those that do not bind to

DNA, to learn a regulatory program controlling target genes.

Notably, MEDUSA identifies motifs directly from promoter

sequences; no prior knowledge of any DNA-binding motifs is

used. MEDUSA trains on differentially expressed target genes

from multiple experiments to discover both the motifs in

promoters and the condition-specific regulators that together

define a global regulatory control program. This regulatory

program predicts whether a gene will be up- or downregulated,

given its promoter sequence and the condition-specific expression

level of the regulators. MEDUSA uses a modern statistical

learning technique called boosting [23] to avoid over-fitting as it

searches through the large space of possible regulators and

sequence motifs [24]. As a result, it achieved high prediction

accuracy in cross-validation results using held out gene-experiment

examples for the oxygen regulation dataset, where we compare

up/down prediction to experimentally measured differential

expression, despite the fact that the number of gene expression

experiments (6 conditions with 3 replicates) was much smaller than

in previous computational approaches for learning regulatory

networks. We then used a novel margin-based score to extract the

condition-specific regulators and putative DNA binding site motifs

that are most significant for predicting the expression of particular

sets of target genes. We summarized this information with a global

map of the oxygen regulatory network, which includes both known

and novel regulators. Since MEDUSA associates regulators to

target genes via motifs in the promoter sequence, we directly tested

the predicted regulators for the OLE1 gene by experimental

analysis of its promoter activity under deletion of each of these

regulators. In each case, the change in OLE1’s promoter activity

under hypoxia was consistent with MEDUSA’s predictions. These

results confirm that several novel regulators are indeed involved in

oxygen regulation. Finally, we performed a comprehensive

comparison of the motif discovery results of MEDUSA with a

conventional cluster-first motif discovery algorithm, and we found

that MEDUSA identified many DNA binding site motifs that are

relevant to hypoxia and missed by the traditional approach.

Results

Perturbations of the Oxygen Regulatory Network Reveal
Diverse Expression Signatures

We used microarray gene expression profiling data from triplicate

RNA samples, prepared from cells grown under eight different

experimental conditions (see Methods) to observe perturbations of

the oxygen sensing and regulatory network and study its behavior.

We identified several classes of genes: Hap1-dependent or -

independent oxygen-regulated, heme-regulated, and Co2+-inducible

genes (see Figures S6 and S7). These results were consistent with

previous studies identifying differentially expressed target genes. For

example, we identified previously known oxygen- and heme-induced

genes, such as COXs, CYC7 and CYT1 [25–29]; and previously

known hypoxia-induced genes, such as ANB1, MGA2, OLE1, PAU2-

5, PAU7, DAN1-4 and HSPs genes [30–39].

Prior to performing more integrative computational analysis, we

also examined the broad patterns of gene expression in our

dataset. We identified 16 distinct discretized co-expression

signatures (see Methods) to which we assigned the differentially

expressed genes, including 5 pairs of antagonistic signatures whose

patterns of expression are nearly the same but opposite in direction

(Figure 1). For example, we found a pair of expression signatures

consisting of genes that are exclusively induced by heme deletion

(signature 11) or exclusively suppressed in this condition (signature

14). Signature 14 contains the ergosterol biosynthesis genes, which

are known to be heme regulated, while most of the genes in

signature 11 (354 out of 500) are functionally uncharacterized and

may include novel heme-regulated genes. While most of these

expression signatures contain several hundred genes, a few sets are

smaller and functionally more coherent. In particular, signature 16

consists of 34 Hap1-dependent genes that are strongly suppressed

in all conditions including the Dhap1 experiment. These genes

include the COX and QCR genes and are involved in aerobic

respiratory processes, electron transport, and heme-dependent

oxidoreducatase activity. In most cases, the expression signatures

could be assigned significant functional terms, though in general

only a smaller subset of the genes in a signature belong to the

enriched category (see Text S1 for details).

MEDUSA Deciphers Regulatory Networks without
Clustering Genes

While these signatures consist of genes that are coexpressed, for

the most part they are large and functionally heterogeneous gene

sets and do not represent true functional regulons. In general,

small expression datasets may not contain enough resolution to

decipher fine context-specific coexpression patterns, and analysis

of coexpressed gene sets can provide only limited insight into

Author Summary

The cell uses complex regulatory networks to modulate
the expression of genes in response to changes in cellular
and environmental conditions. The transcript level of a
gene is directly affected by the binding of transcriptional
regulators to DNA motifs in its promoter sequence.
Therefore, both expression levels of transcription factors
and other regulatory proteins as well as sequence
information in the promoters contribute to transcriptional
gene regulation. In this study, we describe a new
computational strategy for learning gene regulatory
programs from gene expression data based on the
MEDUSA algorithm. We learn a model that predicts
differential expression of target genes from the expression
levels of regulators, the presence of DNA motifs in
promoter sequences, and binding data for transcription
factors. Unlike many previous approaches, we do not
assume that genes are regulated in clusters, and we learn
DNA motifs de novo from promoter sequences as an
integrated part of our algorithm. We use MEDUSA to
produce a global map of the yeast oxygen and heme
regulatory network. To demonstrate that MEDUSA can
reveal detailed information about regulatory mechanisms,
we perform biochemical experiments to confirm the
predicted regulators for an important hypoxia gene.

A Predictive Oxygen Network
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Figure 1. Expression signatures identified by perturbation of the oxygen regulatory network. (A) Heat maps showing real-valued
expression profiles of genes that are members of the 16 signatures identified. The expression values are in log2. The rows represent genes and the
columns represent the 6 experimental conditions. Bright red indicates strong upregulation, bright green indicates strong downregulation, and black
indicates no change in expression. Each signature is labeled with statistically significant functional annotations. (B) Each block displays the average
real-valued expression (stem plot in dark blue) and discrete expression profile (bar plot in light blue) for each signature over the 6 experimental
conditions. The real-valued expression values are in log2.
doi:10.1371/journal.pcbi.1000224.g001
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regulation in this case. Applying typical motif discovery algorithms

to broadly coexpressed gene sets also leads to problems (see results

below), since the gene ‘‘clusters’’ are in fact likely to be mixtures of

differently regulated gene sets. However, the strength of our

dataset is that it measures key perturbations related to oxygen and

heme regulation; it should contain rich information about the

commonalities and differences in regulation of the genes that

respond to these perturbations. Therefore, instead of using

coexpressed gene sets as independent inputs for subsequent

computational analysis, we used MEDUSA to learn a gene

regulatory program from the entirety of the perturbation data.

MEDUSA does not depend only on the correlation of the

mRNA level of regulators and targets to infer a regulatory

relationship. Instead, the algorithm requires that regulators control

their targets through the presence of shared sequence motifs in the

promoters of target genes, and it learns these motifs as it builds a

regulatory program. MEDUSA integrates a number of ideas that

have been used previously in computational modeling of

regulatory programs but also implements a conceptually different

approach. For example, like the module networks algorithm of

Segal et al. [22], we used the expression levels of a known set of

transcriptional regulators, which include both transcription factors

and signaling transducers, to learn a context-specific model of

regulation. However, while the module networks approach uses

only expression data, MEDUSA also incorporates promoter

sequence data to learn DNA motifs as part of the regulatory

program. As in recent work of Beer and Tavazoie [21], we wish to

predict expression from promoter sequences without reference to a

target gene’s identity. However, rather than predicting the cluster

membership of genes, our model predicts up and down regulation

of individual target genes, based on promoter sequence and

regulator expression, across multiple experimental conditions.

MEDUSA also differs from these previous studies and most

other work by implementing a number of key algorithmic features:

(1) it integrates promoter sequence, expression and ChIP-chip data

to predict a global regulatory program; (2) it avoids over-fitting

when training in a high dimensional feature space by use of a

machine learning technique called boosting; (3) it learns functional

contributions of both regulators and motifs; (4) it learns binding

site motifs directly from sequence without seeding the algorithm

with known motifs; (5) it automatically learns the threshold for

deciding the presence of motifs. We note that in our previous work

[40,41], we used boosting to learn regulatory models based on a

library of known motifs, while MEDUSA learns motifs de novo. In

an earlier work, Segal et al. [42] used a probabilistic relational

model framework to learn transcriptional modules, i.e., gene sets

whose shared expression patterns are supported by the shared

motifs in their promoter sequences. Unlike our approach, this

algorithm relies on assigning genes to static clusters and is seeded

with database motifs, though motifs are re-estimated over training

iterations. More recently, for the special case of time series

expression data, Ernst et al. [43] presented a probabilistic

approach that learns a temporally-organized hierarchical cluster-

ing of genes, where bifurcations of genes that go up or down at

specific time points are explained by shared motifs or ChIP chip

occupancy data. This algorithm uses static occupancy and

database motif data rather than learning motifs at the same time

as the regulation model.

Figure 2 illustrates the major steps and data used in the

MEDUSA learning algorithm. In preprocessing, mRNA expres-

sion data is discretized by binning expression values into three

states (up, down, and baseline) and partitioning genes into

regulators and targets (Figure 2A). In the first stage of training

(Figure 2B and 2C), MEDUSA uses the promoter sequences of

target genes and the mRNA levels of regulators as inputs to learn a

prediction function for the differential expression of targets.

MEDUSA uses boosting to iteratively discover motifs whose

presence in the promoters of target genes, together with the

mRNA levels of regulators across experimental conditions, helps to

predict the differential expression of the targets in those conditions.

It builds a global regulatory program based on these motifs and

regulators (Figure 2D). In order to produce a regulatory program

that is more consistent under variations of the training data, a

second pass of the regulatory program building algorithm is

performed using a stabilized variant of boosting (see Methods).

This second pass integrates the motifs discovered in the first

training stage, promoter occupancy data from ChIP-chip analysis,

and expression data of regulators and targets, to build a final

regulatory program that predicts the up or down regulation of

target genes. The regulatory program asks questions such as, ‘‘Is

the mRNA level of regulator r up (or down) in the experiment,

and is the motif m present in the upstream region of the gene (or is

a transcriptional regulator bound to the promoter, when ChIP-

chip data are available)?’’ The control logic of the regulatory

program is described by an alternating decision tree (Figure 2D

and Figure 3), which encodes how the overall up or down

prediction score for a target gene in a given experimental

condition results from the contribution and interaction of multiple

regulators and motifs.

Figure 3 presents a simplified example to illustrate how a

regulatory program generated by MEDUSA computes a context-

specific prediction score to predict the up/down regulation of

target genes. The size of the score can be interpreted as our

confidence in the up/down prediction. In context B (Figure 3, top

right), the promoter of gene A contains a pair of sequence motifs

associated by the regulatory program to a weak activator and a

stronger repressor that are both expressed in the experimental

condition. The regulatory program makes a moderately confident

prediction that gene A will be downregulated (depicted by the

dashed line on the extreme right), based on the sum of scores from

the relevant pair of nodes in the tree. In context C (Figure 3,

bottom right), the promoter of target gene B contains binding sites

for the weak activator but also for a co-factor, placed in a node

below the weak activator in the tree. Both the activator and the co-

factor are expressed in the condition shown, and the regulatory

program computes a confident up prediction for gene B in this

condition. In this way, MEDUSA encapsulates a genome-wide

and context-specific regulatory program, learned directly from

promoter sequence and expression data and without the

introduction of additional prior assumptions.

MEDUSA Achieves High Prediction Accuracy in Cross-
Validation

We first performed a statistical analysis to verify that MEDUSA

could achieve good prediction performance on held-out data, i.e.,

correctly predict up or down expression for examples not included

in the training data. In our cross-validation experiments, we used

90% of the gene-condition experiments as the training set to

identify statistically significant regulators and motifs. Then, we

used these regulators and motifs to predict the expression of the

10% held-out examples, as illustrated in Figure 3 (see also Text

S1). We achieved 92% accuracy across 10-fold cross-validation

experiments in the prediction of the up or down expression of

held-out examples (Table 1). MEDUSA is trained to solve the

binary prediction problem of discriminating between upregulated

and downregulated examples. Such differentially expressed

examples constitute about 12% of our dataset, and a total of

3482 genes were differentially expressed in at least one condition.

A Predictive Oxygen Network
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However, by thresholding the positive and negative real-valued

prediction scores, we can make three-class predictions of up,

down, or baseline across all held-out examples, not just the

differentially expressed ones. We found that MEDUSA’s accuracy

on the three-class prediction problem was still high; in particular,

true baseline examples were most often predicted to be baseline,

even though no baseline examples were seen during training (see

Text S1, Figure S1, and Figure S2).

We then investigated whether MEDUSA’s high accuracy was

simply an indication that the prediction task itself was easy,

perhaps due to the presence of replicate experiments in the

dataset; note, however, that one of the three replicates was

performed on a different yeast strain (see Methods), so that the

variation was higher than in technical replicates. We conducted a

series of additional experiments (Table 1) to address this issue. We

first compared MEDUSA’s results to a simple correlation-based

method, where we identified the regulator that best correlated with

each target gene across the training examples (using a Hamming

distance metric, see Methods) and used this regulator’s expression

state to predict the target’s expression level on the test examples.

This approach necessarily uses the target gene’s identity rather

than learning a single model that can be applied to all genes. We

found that using a single ‘‘nearest regulator’’ for each target gave

poor prediction results (similar or worse than random guessing, see

Methods). Taking the majority vote over a set of 10 nearest

regulators gave good test accuracy, but the regulators most

frequently chosen as nearest regulators did not include any of the

key known regulators; in fact, every regulator was chosen at least

once, and key regulators like Hap1, Rox1, and Mga2 ranked low

in terms of frequency. We then prepared a much more difficult

cross-validation experiment, where all replicate examples of each

gene in an experimental condition were grouped together in a fold.

In this way, for any particular target gene, the training and test

examples came from completely different conditions. In this

setting, MEDUSA still achieved significant accuracy given that

there were only 6 experimental conditions (76%), while the nearest

Figure 2. A schematic flow chart showing the algorithmic steps for learning the oxygen regulatory program with MEDUSA. (A) The
mRNA expression data is discretized into three states, up (over-expressed), down (under-expressed), and baseline (not significantly differentially
expressed), and genes are partitioned into potential regulators (transcription factors and signal transducers) and targets. The regulators are also
included in the list of target genes so that their transcriptional regulation can be modeled. (B) The MEDUSA learning algorithm is presented with the
promoter sequences of target genes, the discretized expression profiles of the regulators across multiple conditions, and the differentially expressed
(up and down) target gene examples from these experiments. Baseline examples are not used to train MEDUSA. In the first stage of training, MEDUSA
considers rules based on promoter sequence data and regulator expression states. MEDUSA uses a boosting strategy to avoid overfitting over many
rounds of the algorithm. At each iteration i, a motif/regulator rule is chosen based on the current weights on the training examples; this rule predict
that targets whose promoters contain the motif will go up (or down) in experiments where the regulator is over- (or under-) expressed. Before the
next iteration, the examples are reweighted to emphasize the ones that are difficult to predict. (C) To learn the sequence motif, the algorithm
agglomerates predictive k-mer sequences to produce candidate PSSMs, and it optimizes both the choice of PSSM and the probabilistic threshold
used to determine where the hits of the motif occur. (D) At the end of each round of training, motif /regulator rules are placed into an alternating
decision tree, building a global regulatory program. This regulatory program can be used to predict target gene up/down regulation for gene-
experiment examples that were not seen in training. In order to produce a more stable decision tree, we perform a second pass of the tree-learning
algorithm using a stabilized variant of boosting that gives more consistent models over different subsets of the training data. At this stage, both the
motifs learned previously by MEDUSA and TF occupancies from ChIP-chip experiments are used as sequence features for the final regulatory
program.
doi:10.1371/journal.pcbi.1000224.g002
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regulator methods were no better than random guessing (Table 1).

Finally, we ran MEDUSA using ChIP-chip occupancy features

alone, without including promoter sequence data for motif

discovery. We found that cross-validation accuracy deteriorated

considerably (from 92% to 74%), indicating that motif discovery,

or at least the use of sequence motifs, is crucial to MEDUSA’s

success (see Text S1). These experimental results strongly suggest

that MEDUSA has learned regulatory information that general-

izes to new data rather than over-fitting the training data.

Ideally, one would like to compare MEDUSA’s cross-validation

accuracy and predicted regulators to previous computational

methods. Here, however, the relatively small size of our dataset

precludes a reasonable comparison. Neither classical Bayesian

network approaches [15] nor more recent module-oriented

algorithms [21,22] were designed to be trained on a small number

of conditions, and indeed they have only been tested when very

large expression datasets (.100 experiments) are available. Other

motif discovery approaches such as REDUCE [44] use single

microarray experiments as input but are designed to extract a

small number of strong motifs that account for a statistically

significant percentage of the within-experiment variance. Such

methods are not optimized to accurately predict up/down

expression, nor do they directly identify regulators, so it is difficult

to set up a meaningful comparison. However, we do perform a

comparison with standard cluster-based analysis and motif

discovery below, where we show that both at a global level and

when restricting attention to particular functional regulons,

MEDUSA finds more detailed motif information (see below).

MEDUSA Identifies a Network of Condition-Specific
Regulators Mediating Global Gene Regulation

MEDUSA’s high accuracy on held-out examples gives us

confidence that the decision tree contains statistically significant

and biologically relevant regulators and motifs. In order to identify

the most significant regulators and motifs controlling specific sets

of differentially expressed target genes under specific experimental

conditions, we ranked these features using a novel margin-based

Figure 3. Simplified example showing how the regulatory program learned by MEDUSA predicts context-specific up/down gene
expression. MEDUSA learns a global regulatory program described by an alternating decision tree. A simple regulatory program is shown in part A
of the figure, along with the prediction it makes in two contexts, indicated as context B (top right) and context C (bottom right). The interaction
between a regulator and a motif and the effect on targets is described by a decision node, which contains a logical condition to be tested, e.g., ‘‘Is
regulator i up in the experiment and is motif i present in the promoter?’’, and by the contribution that this motif/regulator pair makes to the up/down
prediction of target gene expression if the logical condition is true, which is indicated by a colored bar. Contributions to upregulation of targets are
shown in red and downregulation of targets in green. Combinatorial regulation is encoded by the tree structure: we obtain a prediction score for the
up/down regulation of a target gene in a given experimental condition by starting at the root and recursively working downwards in the tree, seeing
which prediction nodes are reachable by answering ‘‘yes’’ to logical conditions and summing all score contributions for the nodes visited. (Context B)
In the first context, both Reg 2, a transcriptional activator, and Reg 1, a repressor, are expressed, and the promoter of gene A contains the motifs
associated by the regulatory program to both these regulators. The regulatory program computes the prediction score by summing the larger
contribution of the repressor (green bar) with the smaller contribution of the activator (red bar) to obtain a negative prediction score (indicated by
the dashed line on the far right), i.e., gene A is predicted to be downregulated. (Context C) In the second context, both the activator Reg 2 and a co-
factor, Reg 3, are expressed and can bind to the promoter of gene B based on the presence of the associated motifs in the regulatory program. The
logic of the tree requires that the condition involving Reg 2 must hold before the contribution of the node containing Reg 3, at the next level of the
tree, can be counted. Here, both conditions hold, and the regulatory program adds two positive contributions to obtain a confident prediction that
gene B will be upregulated.
doi:10.1371/journal.pcbi.1000224.g003

Table 1. Tenfold cross-validation accuracy for nearest-
regulator method and MEDUSA, with and without grouping
replicate examples within a fold.

Prediction Method

Tenfold c.v
Accuracy (held-
out examples)

Tenfold c.v
Accuracy (replicates
in same fold)

Nearest regulator 59.8% 31.0%

Majority vote of k = 10 nearest
regulators

88.9% 55.0%

MEDUSA 92.0% 76.1%

doi:10.1371/journal.pcbi.1000224.t001

A Predictive Oxygen Network
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score (see Methods). The score assesses how significantly an

individual feature contributes to the confidence of predictions over

the specific set of target genes and experiments.

We first used margin scoring to identify statistically significant

regulators that may mediate the regulation of various target genes

in the dataset. Figure 4 provides an example of the condition-

specific regulators and motifs identified by MEDUSA. To clarify

the roles of Hap1 and heme in oxygen regulation, we identified

and compared the potential regulators (Figure 4A) and motifs

(Figure 4B) that may mediate the regulation of hypoxically

suppressed (oxygen-induced) genes in wild type HAP1 or Dhap1

cells, and heme-induced (heme deficiency-suppressed) genes. Note

that intracellular heme levels are low under hypoxic growth

conditions [45], so hypoxically suppressed (oxygen-induced) genes

correlate with heme deficiency-suppressed (heme-induced) genes.

The expression levels of identified regulators and target genes are

indicated in Figure 4C and 4D, respectively.

MEDUSA analysis identified a number of known regulators

whose predicted condition-specific role is consistent with previous

knowledge of oxygen and heme regulation. For example,

consistent with existing knowledge [33,34,46], Hap1 is important

for the regulation of oxygen-induced genes in cells bearing the

Hap1 expression plasmid and for heme induction of target genes

(see Figure 4A and 4C). Likewise, Hap4 is important for heme

induction and for the regulation of oxygen-induced genes in both

cells bearing the Hap1 expression plasmid (HAP1) and the empty

Figure 4. Heat maps showing predictive regulators, predictive motifs, and targets induced by oxygen and heme. (A) A Venn diagram
illustrating the regulators involved in controlling hypoxically suppressed (oxygen-induced) genes in HAP1 and Dhap1 cells, and heme-induced genes.
For each experiment, the statistically significant regulators associated with the set of downregulated target genes are determined by use of a margin-
based score (see Methods). (B) Patterns of up (red), down (green), and baseline (black) expression levels for the statistically significant regulators
controlling downregulated target genes across the three experimental conditions. (C) The top-ranked sequence features learned by MEDUSA, as
determined by a margin-based score, and their hits across the set of target gene promoters. The PSSMs learned by MEDUSA are represented by their
consensus patterns. ChIP-chip occupancy features also occur in the list of most significant features. For example, SIG1-CH refers to ChIP-chip
occupancy by the transcription factor SIG1 and appears as a highly-ranked promoter sequence feature. The presence or absence of a sequence
feature in a gene’s promoter is represented by blue or black blocks respectively. (D) Discretized gene expression levels for the full set of target genes
represented in the Venn diagram (total of 1798 genes), given by combining the down-regulated target gene list from each of the three experimental
conditions. Note that the expression patterns include only down and baseline expression levels across all three conditions.
doi:10.1371/journal.pcbi.1000224.g004

A Predictive Oxygen Network
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vector (Dhap1, Figure 4A and 4C). Rox1 appears to be important

for the regulation of oxygen-induced genes only in Dhap1 cells.

This is not surprising because Rox1 expression is known to be

under the control of Hap1 [33,34]. In cells bearing the Hap1

expression plasmid (HAP1), Hap1 would be the dominant

regulator. Another notable case is Mga2, which has been shown

to be important for oxygen regulation of certain genes, such as

OLE1 [31,47]. Here we found that it is indeed important for

oxygen induction of genes in both cells bearing the Hap1

expression plasmid (HAP1) and the empty vector, but it is not

important for heme regulation, as expected.

We also identified and compared statistically significant

regulators that may mediate the regulation of hypoxically induced

genes in cells bearing the Hap1 expression plasmid (HAP1) and the

empty vector (Dhap1) and those that mediate heme deficiency-

induced (heme-suppressed) genes (Figure 5A and Figure S3).

Likewise, we identified and compared regulators that may mediate

the regulation of Co2+-inducible genes with those mediating the

regulation of hypoxically induced genes (Figure 5B and Figure S4).

The comparison of these regulators mediating oxygen regulation,

heme regulation, and Co2+-inducible regulation provides several

important insights into the regulatory network mediating oxygen

sensing and regulation. First, more than half of the MEDUSA-

identified regulators mediating heme regulation may also be

involved in mediating oxygen regulation both in HAP1 cells (12

out of 20 regulators) and in Dhap1 cells (15 out of 20 regulators)

(Figure 4A). Many regulators predicted to be involved in heme

suppression of target genes may also be involved in oxygen

induction in wild type HAP1 cells (13 out of 18) and in Dhap1 cells

(11 out of 18) (Figure 5A). These results are consistent with the

previous idea that heme serves as a secondary messenger of oxygen

and plays a major role in mediating oxygen regulation of target

genes. Second, Hap1 plays a major role in oxygen regulation. In

the absence of Hap1, the number of regulators mediating oxygen

regulation may be significantly increased both for oxygen-induced

genes (Figure 4A) and hypoxically induced genes (Figure 5A).

Third, relatively few regulators may be involved in mediating

the regulation of hypoxically induced and Co2+-inducible genes

Figure 5. Venn diagrams showing the statistically significant, high ranking regulators mediating the regulation of oxygen-
regulated, heme-regulated, and Co2+-inducible genes in HAP1 and Dhap1 cells. (A) A Venn diagram illustrating the regulators involved in
controlling hypoxically induced (oxygen-suppressed) genes in HAP1 and Dhap1 cells, and heme-suppressed genes. (B) A Venn diagram illustrating the
regulators involved in controlling hypoxically induced (oxygen-suppressed) genes in HAP1 and Dhap1 cells, and Co2+-inducible genes. (C) A Venn
diagram illustrating the regulators involved in controlling hypoxically induced (oxygen-suppressed) genes in HAP1 cells at 1.5 or 6 hours after shifting
to anaerobic growth conditions. (D) A Venn diagram illustrating the regulators involved in controlling hypoxically suppressed (oxygen-induced)
genes in HAP1 cells at 1.5 or 6 hours after shifting to anaerobic growth conditions.
doi:10.1371/journal.pcbi.1000224.g005
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(Figure 5B). These results suggest that the Co2+-inducible oxygen

regulatory pathway plays only a minor role in mediating oxygen

sensing and regulation.

MEDUSA identified the regulators that may mediate the

regulation of oxygen-regulated genes that were affected at the

early stage (1.5 hours) of anaerobic growth (Figure 5C and 5D) in

cells bearing the Hap1 expression plasmid (HAP1), finding some

regulators common to both time points and some specific to early

or late stages. The results from analysis of both target genes (Figure

S7) and regulators (Figure 5C and 5D and Figure S5) suggest that

there was a significant switch in the regulatory and expression

programs in the cells as anaerobic condition prolonged.

To display the statistical importance of various regulators in the

global oxygen and heme regulatory network, we summarized our

results by using a global regulatory map (Figure 6). Figure 6

illustrates the significance of the regulators for predicting the up or

down regulation of target genes under the tested six different

experimental conditions, ranked by margin score. Several previously

characterized regulators that are known to be important for oxygen

and/or heme regulation, including Upc2, Rox1, Mga2, Hap4, and

Hap1 [2,27,31–34,46–51], ranked highly in this global regulatory

map. Among the most significant regulators, six were previously

known to be important for hypoxia response or oxygen regulation

(Figure 6). Seven regulators known to be involved in cell cycle were

identified by MEDUSA in this network. Intriguingly, six regulators

known to be involved in pheromone response were identified

(Figure 6). Likewise, several regulators known to regulate osmotic,

salt and pseudohyphal growth were also identified. These results

suggest that oxygen and heme regulation may share many regulators

with pheromone and other signaling pathways. However, the

regulators that are involved in general stress responses, such as Msn2,

Msn4, and Hsf1 [52–55], were not identified by MEDUSA as

significant regulators.

Figure 6 includes a total of 54 regulators identified by margin

score for up/down regulated gene sets. We quantified the

statistical significance of these regulators by computing an

empirical null distribution for the margin score and then

estimating p-values for each regulator/gene set (see Figure S10

and Figure S11 for details). We then used a Benjamini-Hochberg

procedure [56] to estimate the false discovery rate (FDR)

associated with various p-value thresholds (Figure S12). We find

that if we set the p-value threshold so that all 54 regulators satisfy

the significance threshold for at least one gene set, then our

estimated FDR is less than .04.

Experimental Data Measuring the OLE1 Promoter Activity
Confirms Novel MEDUSA Regulators

To experimentally test specific regulators identified by using

MEDUSA, we examined the OLE1 promoter, because this promoter

has been well characterized previously [31,39,57]. The full-length

OLE1 promoter-lacZ reporter activity is strongly induced by hypoxia

[39]. By applying margin-based scoring to a set of previously

identified OLE1-like genes [31,39,57], we extracted significant

OLE1-specific motifs and regulators under hypoxia. Among the

significant motifs, we found LORE (low oxygen response element),

which has been experimentally determined [39] and is known to be

the Mga2 binding site [31], as well as the binding sites for Hap1 and

Aft1/2, which are also known to bind OLE1 [58].

We then used margin-based scoring for regulators to identify

Mdg1, Met28, Upc2, Pig1 and Rme1 as potential regulators for

the OLE1 promoter. Only Upc2 was previously known to be

involved in oxygen regulation. The expression of all these

regulators but Mdg1 was upregulated by hypoxia. Note that the

MEDUSA model does not assert that these regulators directly bind

the OLE1 promoter but does predict that they regulate OLE1

expression, perhaps through indirect interactions. Conceptually,

the margin score for a regulator is similar to ‘‘knocking out’’ the

regulator from the regulatory program and computing whether

the effect is predicted to be significant for specific targets and

conditions (see Methods). This connection suggests a direct

approach for validation of these regulators using the correspond-

ing deletion mutants. Namely, to determine the effects of these

regulators on the OLE1 promoter-lacZ reporter activity, we

measured b-galactosidase activities in wild type and mutant cells

with one of the regulator genes deleted (Figure 7). Except for

Dmdg1 cells, the reporter activity in the hypoxic mutant cells were

all reduced, compared to that in wild type cells (Figure 7). Because

hypoxia suppressed Mdg1 expression, indicating its negative role

in OLE1 induction, it is conceivable that its deletion would not

affect the reporter activity in hypoxic cells. In contrast, because

hypoxia induced the expression of other regulators, indicating

their positive role in OLE1 induction, their deletion would cause

the reporter activity to decrease in hypoxic cells. Deletion of

MET28, UPC2, and PIG1 also significantly reduced the fold

induction of the OLE1 reporter activity by hypoxia (Figure 7).

These experimental results strongly support the power of the

MEDUSA analysis to predict regulators for specific targets.

MEDUSA Reveals More Detailed Regulatory Information
Than Standard Computational Analysis

We further analyzed whether MEDUSA could correctly extract

regulatory information about a known functional regulon, and we

compared the results of MEDUSA analysis with AlignACE [59,60],

a standard motif algorithm. We then did a global comparison of

transcription factor binding motifs attributed by MEDUSA and

AlignACE to the 16 expression signatures in our dataset.

The functional regulon we examined was signature 16, one of the

smaller expression patterns consisting of a set of 34 HAP1-dependent

genes that are strongly suppressed in all conditions including the

Dhap1 experiment. These genes (such as the COX and QCR genes)

are involved in aerobic respiratory processes (1e-14), electron

transport (4.37e-14) and heme-dependent oxidoreducatase activity

(5.77e-14). Starting with the global MEDUSA regulatory program,

we extracted all sequence motifs and regulators with positive margin

score for this set of genes and further ranked them based on the

number of target genes they were predicted to regulate.

We first considered transcription factors that were high ranking

by both regulator and motif criteria. Namely, they were high

scoring regulators based on their mRNA expression states and

their binding site motifs were discovered by MEDUSA and ranked

as significant and frequent for the 34 genes in the signature. This

set of transcriptional regulators consisted of Hap1, Mot3, Ace2,

Mac1, Msn2, Ste12, Gcn4, Pho4 and Hap2/3/4. MEDUSA also

ranks the Hap1 and Hap4 ChIP-chip occupancy profiles as highly

significant features for these genes. By examining the literature, we

found support for many of these transcription factors regulating at

least several of the target genes in this set. For example, CYC1,

CYC7 and CYT1 are known to be directly regulated by Hap1 [61].

Hap2/3/4 is known to directly affect expression of COX4, COX5,

COX6, CYC1 and CYT1 [61]. Mot3 is known to directly regulate

CYC1 expression [62]. FRE1 and CTR3 are known to be regulated

by Mac1 [61,63]. Upc2 and Mga2 are also important hypoxia

regulators, and MEDUSA identified their binding sites as high

scoring motifs for smaller subsets of genes within the signature.

MEDUSA also identifies Abf1 as a significant regulator through its

mRNA expression, but the sequence motif corresponding to the

Abf1 binding site and the Abf1 ChIP-chip data have low margin

scores. Some of the COX genes are known to be regulated by Abf1
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Figure 6. A global read-out of the oxygen regulatory network learned by MEDUSA. By applying margin-based scoring to the full list of
potential regulators for the up- and downregulated target genes in each experimental condition, we identified 54 predictive regulators in the oxygen
regulatory network. For each condition, we show the state of the regulator in red (upregulated) or green (downregulated), where the brightness of
the color indicates the significance of its contribution to up or down predictions for the targets, based on normalized margin score. Significance of
the regulators to the up-regulated targets is shown in the left half of the column, while contribution to the down-regulated targets is shown in the
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in other conditions [61], and the Abf1 binding site is present in

several of the genes. In this case, our MEDUSA analysis suggests

mixed evidence for Abf1 as a transcriptional regulator of the regulon,

and it is possible that under hypoxia other regulators dominate.

As a comparison, we also used AlignACE to find overrepresented

sequence motifs in the promoter regions of this gene set. Since the

signature is small and represents a true functional regulon, it provides

an ideal case for traditional motif discovery algorithms. Using the

motif discovery program in the most permissive way (that is, without

enforcing any significance threshold on the motifs), AlignACE was

only able to find significant hits for the binding sites of Cha4, Hap1,

Ace2 and Gcn4. For Hap2/3/4, the MAP score (3.4) had very low

statistical significance, even though the motif is very abundant in this

gene set (46.1%) and is known to regulate most of these genes [61].

Also, AlignACE was not able to identify more subtle context-specific

regulators such as Mot3, Mac1, and Mga2, which are known to

regulate these genes.

Figure 8 shows a comprehensive comparison of MEDUSA to

AlignACE motif discovery results across all 16 signatures. We used

AlignACE with default settings on 1000 base pair promoter

sequences of genes belonging to each signature and used AlignACE’s

maximum a posteriori (MAP) scores to rank their statistical

significance. We also defined the abundance score for each motif

as the fraction of promoters that were found to have the motif.

Similarly, we used margin scoring to identify significant MEDUSA

motifs for each of the signatures, reporting only those motifs with a

positive margin score. For MEDUSA, we defined the abundance

score for a motif as the fraction of promoters in the signature set that

were found to have the motif based on the tree structure of the

learned model. In order to compare the two methods, we report in

Figure 8 only those motifs that matched known transcription factor

binding sites PSSMs in TRANSFAC, SCPD or YPD (using

Kullback-Leibler divergence to compare motifs [8]) or matched

consensus sequences found by MacIsaac et al. [64]. (A separate

comparison of MEDUSA motifs to MacIsaac et al. motifs alone

appears in Figure S9.) If multiple motifs were found to be strong

matches to the same known binding site, we reported the one with

the highest statistical score. In total, we matched 111 motifs found by

either or both methods to known binding sites, and we sorted these

motifs into 3 categories based on the difference between the

cumulative margin score and cumulative MAP score across all the

signatures. The first set consists of 67 motifs identified by MEDUSA

but not by AlignACE; the second set consists of 22 motifs that are

identified by both MEDUSA and AlignACE; and the third set

consists of 22 motifs that are identified by AlignACE but not

MEDUSA. In Figure 8, the motifs highlighted in red are binding

sites of transcription factors known to play a key role in hypoxia-

related conditions. MEDUSA is able to identify a number important

hypoxia-related transcription factor binding sites, including Hap1

(CGGnnTAnCGG), Hap2/3/4 (CCAAT), Mga2 (ACTCAACAA),

Upc2/Ecm22 (TCGTATA), Ace2 (TGCTGGT), Mot3

(TTGCCT), Mac1 (TGCGCAAA), Aft2 (RVACCCTD), Msn2/4

(AAGGGGc), Rox1 (AAAGACAAAAAA) and Abf1

(RTCRnnnnnACG). Among these, AlignACE is able to identify

Rox1, Msn4 and Abf1, and it finds the Hap1 and Hap2/3/4 binding

sites only for a single signature (signature 16). Moreover, none of the

motifs exclusively identified by AlignACE are known to have any

role in the hypoxia-related conditions. In particular, the top scoring

AlignACE motif is a low complexity motif (AAAAAAAA) that

matches the Azf1 binding site. These results show that MEDUSA

outperforms AlignACE in finding relevant sequence motifs for our

dataset.

Figure 7. Experimental confirmation of the oxygen regulators identified by MEDUSA. MEDUSA identified Mdg1, Met28, Upc2, Pig1 and
Rme1 as specific regulators of the hypoxia-inducible OLE1 gene. To detect the effects of these regulators on the OLE1 gene, the full-length OLE1
promoter-lacZ reporter [39] was transformed into the wild type or mutant cells with one of the indicated genes deleted. b-galactosidase activities
were measured in cells grown in air or in hypoxic chamber. Data plotted here are averages from at least three independent transformants. The arrows
indicate the effects of hypoxia on the expression levels of Mdg1, Met28, Upc2, Pig1 and Rme1. That is, Mdg1 was downregulated whereas the rest
were upregulated in hypoxic cells.
doi:10.1371/journal.pcbi.1000224.g007

right half. Some regulators contribute significantly to the prediction of both up- and down-regulated targets within a condition due to indirect
regulation (e.g., a transcriptional activator that controls a repressor), combinatorial effects, and promoter sequence information. Regulators are
ranked from top to bottom in order of overall predictive significance across experiments, computed by taking the larger of the normalized margin
scores for up and down targets in each experiment and then averaging across experiments. The functional category for each regulator is indicated by
an annotation given at the right of the figure and explained in the legend.
doi:10.1371/journal.pcbi.1000224.g006
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Figure 8. Comparison of significance and abundance of motifs learned by MEDUSA and AlignACE for the 16 expression signatures
identified in the dataset. Each row in the table represents a motif found by MEDUSA only (top section), by both MEDUSA and AlignACE (middle
section), or by AlignACE only (bottom section). The first column describes the motif by the name of the corresponding transcription factor followed
by the consensus motif sequence. Some transcription factor names are followed by ‘ChIP’, indicating that these are significant ChIP-chip occupancy
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Discussion

In this study, we applied a novel machine learning algorithm to

learn regulatory programs underlying oxygen regulation and heme

regulation. This algorithm uses experimental data, including

microarray gene expression data, promoter sequence, and ChIP-

chip data, without introducing prior assumptions such as

presuming a cluster structure in gene expression data. The results

from our analysis show that the MEDUSA algorithm can provide

important, unbiased information about global regulatory pro-

grams. MEDUSA identifies many DNA sequence motifs impor-

tant for oxygen and heme regulation (Figure 8). Further,

experimental data from measuring OLE1 promoter activity

confirms the specific predictions made by MEDUSA (Figure 7).

Finally, a comprehensive comparison with a traditional ‘‘cluster-

first’’ motif discovery approach demonstrated that MEDUSA is

more successful at identifying binding site motifs relevant to

oxygen regulation (Figure 8).

MEDUSA identifies many regulators previously known to be

involved in this system. For example, MEDUSA identifies Upc2,

Mga2, and Hap1 [2,32,33,37,46,48,65] as important regulators in

oxygen regulation (Figure 5). Further, MEDUSA predicts many

new regulators of oxygen and heme regulation, such as Pph3,

Bem2, and Pcl1. In support of the regulatory network identified by

MEDUSA, several identified regulators are known to interact with

each other. For example, Mbp1 and Ure2 are known to coexist in

one complex, and the MAP kinase kinase kinase Ssk22 acts

upstream of Mbp1. Pph3 and Bem2 are known to coexist in one

complex, and both likely mediate the regulation of both

hypoxically induced genes and oxygen-induced genes in Dhap1

cells (Figures 4A, 5A, and 6). Wtm1 and Afr1, which are known to

coexist in one complex, act in concert to promote oxygen

regulation in wild type HAP1 cells (Figures 4A and 6). Likewise,

Ire1, which acts upstream of Rgs2, may act with Rgs2 to mediate

the regulation of heme-suppressed genes (Figures 5A and 6).

The purpose of achieving high prediction accuracy on the test

data is to confirm that the identified regulators are statistically

important predictors for the regulation of target genes. The number

of significant regulators identified by MEDUSA is much smaller

than the number of regulators whose expression is changed in a

specific experiment. For example, in cells bearing the Hap1

expression plasmid (HAP1), we identified 18 significant regulators

that may mediate the regulation of the oxygen-induced genes

(Figure 4A), out of 98 regulators whose mRNA levels were

significantly altered in the experiment. This dramatic filtering is

achieved by three aspects of our computational approach. First, we

require that regulators control their putative targets through shared

motifs in the promoter sequences. Second, we train on examples

from multiple experimental conditions. If a regulator cannot be

associated with a binding site motif through which it contributes to

target gene regulation in a consistent way across multiple conditions,

it will not be selected by the algorithm. Finally, we use a novel

margin-based score to identify the most significant regulators for

specific conditional and gene sets. This filtering represents an

important improvement over simply correlating expression levels of

regulators with those of target genes.

It is important to note that the MEDUSA analysis did not identify

the regulators that mediate stress responses, such as Msn2, Msn4,

Tpk1, Usv1, Yap1, and Hsf1 [22,52–55,66,67], although motifs for

some of these regulators are identified in the promoters of target

genes. In some aspects, anaerobic and heme-deficient conditions

exhibit certain characteristics of stress responses. As such, certain

genes induced by stress, such as genes involved in ribosome synthesis,

were induced by anaerobic and heme-deficient conditions (see

Figure S8). However, the regulatory network mediating oxygen and

heme regulation is clearly different from the general stress response

network. The most significant regulators in the oxygen and heme

regulatory network are not those involved in general stress responses.

Interestingly, however, this oxygen and heme regulatory network

shares many regulators with other signaling pathways, such as

pheromone signaling and osmotic responses.

Our analyses suggest a remarkable flexibility of the oxygen and

heme regulatory network. For example, in the absence of Hap1,

certain new regulators, such as Glc8 and Mbp1 and Ure2, along

with some of the regulators acting in wild type HAP1 cells, appear

to be recruited to mediate oxygen regulation to substitute Hap1

(Figure 6). Another feature of the oxygen and heme regulation

network is its complexity. Although several previously known

oxygen and heme regulators, including Hap1 and Mga2 [32,46],

are confirmed to be important in oxygen and heme regulation by

our analysis, many other regulators appear to play important roles

in global oxygen and heme regulation. Through biochemical

validation of the predicted regulators for the OLE1 promoter, we

have taken the first step in confirming the novel components of the

oxygen regulatory network as predicted by MEDUSA. While

much experimental work remains to be done, we are encouraged

by MEDUSA’s success in generating condition- and target-specific

hypotheses that we were able to validate experimentally.

MEDUSA’s ‘‘cluster-free’’ approach has the advantage that it

can still be effective for small expression datasets, where clustering

may only generate large and functionally heterogeneous gene sets.

Moreover, clustering and most ‘‘module’’ learning approaches rely

on the static assignment of genes to clusters across all experiments

in a dataset, which may oversimplify coregulation relationships

between genes. MEDUSA models condition-specific regulation in

a more flexible way that avoids the cluster assumption. However,

methods that produce sets of clusters or modules are more familiar

and easier to visualize than MEDUSA’s gene regulatory programs,

and MEDUSA analysis requires an interpretation step to reveal

detailed information for specific conditions or sets of genes. In the

present work, we used margin scoring to extract significant

regulators for the set of induced/suppressed target genes in each

condition and significant motifs associated with genes belonging to

expression signatures. This analysis gave a convenient summari-

zation of our results, but more general kinds of statistical post-

processing are possible and could be more informative. MEDUSA

features identified by MEDUSA. Motif descriptions highlighted in red indicate transcription factors that are specifically known to have an important
function in hypoxia. The remainder of the table shows MEDUSA (left section) and AlignACE (right section) results for each signature (S1 to S16),
represented by a pair of columns scoring motifs by statistical significance (left column in each pair) and abundance within the set of genes making up
the signature (right column in each pair). For statistical significance scores, columns labeled ‘S’ represent the margin scores (in shades of blue)
assigned by MEDUSA, and columns labeled ‘M’ represent the maximum a posteriori (MAP) scores (in shades of green) assigned by AlignACE. In both
cases, dark shades indicate higher statistical significance. The columns labeled ‘A’ show the percentage abundance scores of the motifs in each of the
signatures. For AlignACE, the abundance score of a motif simply reflects the ratio of the number of genes in each cluster whose promoters contain
the motif, to the cluster size. For MEDUSA, it refers to the ratio of the number of genes in each cluster for which the motif contributes positively to the
margin score, to the size of the cluster. A motif could be present in the promoter of a gene but not identified as significant by MEDUSA. In such cases,
the motif does not contribute to the MEDUSA abundance score. Dark shades of pink indicate strong abundance scores.
doi:10.1371/journal.pcbi.1000224.g008
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is well suited to a perturbation dataset, where the set of regulators

exhibit diverse expression signatures across conditions. In a dataset

where many of the regulators are highly correlated, such as in a

short time series, there may not be enough information in the

discretized regulator expression profiles for MEDUSA to resolve

condition-specific regulators. More generally, MEDUSA incurs

some loss of information by discretizing gene expression data prior

to training. Extending MEDUSA to handle real-valued regulator

and target gene expression levels, for example through a regression

formulation, might address this limitation, but it could also

introduce too much noise and lead to over-fitting. Further

investigation is needed to determine whether such extensions to

the MEDUSA algorithm will lead to greater biological insight.

Methods

Yeast Cell Growth and Treatment
Yeast strains used were L51 (MATa, ura3-52, leu2-3, 112, his4-

519, ade1-100, trp1::HisG, hap1::LEU2) and MHY100 (MATa,

ura3-52, leu2-3, 112, his4-519, ade1-100, hem1-D100) [68]. L51 was

used for studies of oxygen regulation, and MHY100 was used for

studies of heme regulation. To avoid variations from the

differences accumulated after many generations of growth of

strains, we transformed the L51 strain with the HAP1 gene deleted

for studies of Hap1 function. Hap1 protein was expressed in L51

cells by transforming an ARS-CEN plasmid bearing the complete

HAP1 genomic sequence [69]. For comparison with cells without

Hap1 expressed, an empty vector was transformed into L51 cells.

The use of Hap1 expression plasmid generated much more

reproducible results than the use of different strains. Yeast cells

with or without Hap1 expressed grew at similar rates under both

anaerobic and aerobic conditions.

We chose to use a low oxygen level (,10 ppb) in this study, in

order to identify oxygen-regulated genes. Previous studies have

shown that most, if not all, oxygen-regulated genes are affected at

low concentrations, but some genes are not affected at higher

oxygen levels (for example, .1 ppm) [26,45]. Anaerobic

(,10 ppb O2, measured by using an oxygen monitor and

confirmed by CHEMetrics oxygen kits) growth condition was

created by using an anaerobic chamber (Coy Laboratory, Inc.)

and by filling the chamber with a mixture of 5% H2 and 95% N2

in the presence of palladium catalyst [45]. The oxygen level in the

chamber was monitored by using the Model 10 gas analyzer (COY

laboratory Inc). H2 was filled to keep the measured oxygen level at

zero. The precise level of oxygen was further measured by using

rhodazine kit (K-7511) with MDL at 1 ppb, and a range of 0–

20 ppb (http://www.envco.info/prod.php?product_id = 469). L51

cells bearing the Hap1 expression or empty vector were grown

under normoxic or anaerobic conditions for 1.5 or 6 hours. The

UAS1/CYC1-lacZ reporter plasmid [70] was transformed into

yeast cells to confirm the expression of Hap1 and the oxygen

levels. Cells were grown in yeast synthetic complete media. Co2+-

induced cells were grown in the presence of 400 mM cobalt

chloride for 6 hours, as described previously [31,32]. MHY100

cells were grown in medium containing 2.5 mg/ml (heme-

deficient) or 250 mg/ml (heme-sufficient) 5-aminolevulinic acid

[68]. For RNA preparations, yeast cells were inoculated so that the

optical density of yeast cells was in the range of 0.8–1.0

immediately before the collection of cells.

RNA Preparation and Microarray Gene Expression
Profiling

RNA was extracted from yeast cells exactly as previously

described [71]. RNA samples were prepared from 8 different

experimental conditions: (1) L51 yeast cells bearing the Hap1

expression plasmid maintained under aerobic conditions, (2) L51

yeast cells bearing the empty expression plasmid maintained under

aerobic conditions, (3) L51 yeast cells bearing the Hap1 expression

plasmid maintained under anaerobic conditions for 1.5 hours, (4)

L51 yeast cells bearing the Hap1 expression plasmid maintained

under anaerobic conditions for 6 hours, (5) L51 yeast cells bearing

the empty expression plasmid maintained under anaerobic condi-

tions for 6 hours, (6) L51 yeast cells bearing the Hap1 expression

plasmid in the presence of 400 mM cobalt chloride for 6 hours, (7)

MHY100 cells grown in medium containing 250 mg/ml (heme-

sufficient) 5-aminolevulinic acid, and (8) MHY100 cells grown in

medium containing 2.5 mg/ml (heme-deficient) 5-aminolevulinic

acid. For each condition, three replicates were generated by

preparing RNA samples from three batches of independently grown

cells. Microarray expression analyses were performed by using three

batches of replicate RNA samples. The quality of RNA was high as

assessed by measuring absorbance at 260 and 280 nm, by gel

electrophoresis, and by the quality of microarray data (see below).

The synthesis of cDNA and biotin-labeled cRNA were carried

out exactly as described in the Affymetrix GeneChip Expression

Analysis Technical Manual (2000). The yeast Saccharomyces

cerevisiae genome 2.0 arrays were purchased from Affymetrix,

Inc. Probe hybridization and data collection were carried out by

the Columbia University Affymetrix GeneChip processing center.

Specifically, the Affymetrix GeneChip Hybridization Oven 640

and the next generation GeneChip Fluidics Station 450 were used

for hybridization and chip processing. Chip scanning was

performed by using the GeneChip scanner 3000. Initial data

acquisition analysis was performed by using the Affymetrix

Microarray suite. By using GCOS1.2 with the advanced PLIER

(probe logarithmic intensity error) algorithm, we calculated and

examined the parameters reflecting the image quality of the

arrays. Arrays with a high background level in any region were

discarded and replaced. The average noise or background level

was limited to less than 5%. The average intensity for those genes

judged to be present was at least 10-fold higher than those judged

to be absent. Also, arrays that deviated considerably in the

percentage of present and absent genes from the majority of the

arrays were replaced. Arrays with a b-actin 39/59 ratio greater

than 2 were replaced.

Normalization of Microarray Data
For each microarray, we converted the .DAT image files into

.CEL files using the Affymetrix GCOS software. These raw .CEL

files were further processed into expression values using the RMA

express software by Bolstad [72] (Dataset S1). This software uses

the robust multiarray average method by Irrizary et al. [73], which

involves a background correction and a quantile-based normali-

zation scheme.

Discretization of Microarray Data
Each of the knockout, stress, or perturbation microarray

experiments was compared to a corresponding reference micro-

array as shown in Figure 2B. The expression fold-changes (Dataset

S3) were converted to p-values using an intensity-specific noise

model obtained from replicate data. We used the methodology

outlined in Stolovitzky et al. [74] to generate separate empirical

noise models for each of the reference conditions. The fold-

changes were then discretized into +1, 0 or 21 labels using a p-

value threshold of 0.05. A label of +1 (21) indicates up-regulation

(down-regulation) beyond the threshold level of noise.

Several genes have multiple probes on the microarrays. In such

cases, we discretized each probe reading independently and used a
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majority vote over the +1 and 21 discretized values to obtain a

final label for the gene. In cases where a majority vote was not

possible (due to equal number of probes with +1 and 21 values),

we used the label corresponding to the reading with the lowest p-

value. All the replicate experiments were used as input to

MEDUSA. However, in order to remove inconsistency, for each

gene, we further filtered out expression values that did not agree

with the consensus label (+1 or 21) across replicates of a particular

experimental condition. The discretized gene expression data is

presented in Dataset S2. Dataset S4 lists the sets of differentially

expressed genes in each of the experimental conditions.

Database Annotations
We obtained gene annotations and functional associations from

Saccharomyces Genome Database (SGD, ftp://ftp.yeastgenome.

org/yeast/, Jan 2006). The gene ontology tree structure was

downloaded from the Gene Ontology Consortium [75]. To

identify statistically enriched terms associated with sets of genes,

we calculated p-values using the cumulative hypergeometric null

distribution on the basis of the number of genes in the set, the

number of genes in that set that are annotated with each GO term,

and the number of genes in the genome that are annotated with

that GO term. We then filtered terms using 1e-5 as a threshold.

Candidate Regulators
We used a set of 507 regulators consisting of 240 known and

putative transcription factors and 267 known and putative

signaling molecules such as kinases, phosphatases and receptors.

This set includes 466 regulators from Segal et al. [22] and 9

generic (global) regulators from Lee et al. [76].

Promoter Sequences
For the motif discovery phase in MEDUSA, we used 1000 bp

nucleotide sequences upstream of the TSS of all S. cerevisiae genes

that we obtained from the Saccharomyces genome database

(SGD, ftp://ftp.yeastgenome.org/yeast/, Jan 2006). We scanned

these sequences for all occurring k-mer motifs (k = 2, 3, … , 7) as

well as 3-3 and 4-4 dimer motifs allowing a middle gap of up to

8 bp. We restricted the set of all dimers to those whose two

components have specific relationships, consistent with most

known dimer motifs: equal, reversed, complements, or reverse

complements. The MEDUSA algorithm uses an information-

theoretic, hierarchical agglomeration scheme to learn position-

specific scoring matrices (PSSMs) from k-mers and dimers

occurring in the promoter sequences. We generated a set of 450

PSSMs in the first pass of MEDUSA on our dataset.

Chromatin Immunoprecipitation Microarray Data
Harbison et al. [77] use genome-wide location analysis, based

on modified chromatin immunoprecipitation (ChIP), to identify

genomic binding sites for 203 transcription factors in living yeast

cells under 13 diverse environmental conditions, using upstream

regions of approximately 6000 genes. For each genomic region,

the transcription factor occupancy is reported as the log intensity

ratio of the IP-enriched channel versus the genomic DNA channel,

and a single array error model [76] is used to assign p-values to

these measurements. In the second pass of the MEDUSA

algorithm, we used the ChIP data to obtain additional binary

features by thresholding the p-values, augmenting each target

gene’s motif vector by ChIP occupancy features corresponding to

set of transcription factors. We tried different thresholds of 0.001,

0.05 and 0.1 (results not shown) and found the best prediction

accuracy with a p-value threshold of 0.1. Although Harbison et al.

[77] suggest a stricter p-value threshold, their suggestion is based

on minimizing false positives, while in MEDUSA, we use these

binary features to define abstaining weak rules for boosting (see

below). Theoretically, weak rules need only give a small advantage

over random guessing to satisfy the assumptions of boosting. In

this context, false negatives are more of a concern, since rules with

very sparse hits lead to slow and modest improvement in

prediction accuracy. Moreover, other studies suggest that low

affinity binding in ChIP experiments may indeed be functional,

based on sequence conservation evidence [78].

Expression Signatures
We used a two-phase procedure to partition the genes into

expression signatures for an initial qualitative view of the dataset.

The first phase was used to identify the number of unique

signatures. We first averaged the expression data for each gene in

each experimental condition over all replicates. We then

discretized this expression data into 2 levels (+1/21) based on

the sign of the foldchange in expression. We grouped genes into

sets of unique patterns across all experiments. We then averaged

the real-valued expression data for all genes belonging to each

pattern to obtain a ‘‘mean expression signature’’. Patterns with

small support (,10 genes) were hierarchically merged with their

nearest pattern until there were no patterns with ,10 genes. The

nearest neighbor was determined using a square-euclidean

distance metric over the mean expression signatures for each

pattern. This procedure grouped the 3358 significantly expressed

genes to be grouped into 16 sets.

The second phase was used to refine the clustering. We reclustered

the genes into 16 expression signatures using the k-means clustering

algorithm. We used the square-euclidean distance metric over the

real-valued expression data. In an attempt to avoid local minima, we

repeated the clustering procedure 10 times with different starting

points. The initial candidate genes for cluster centroids were

obtained by randomly sampling the 16 gene sets identified in the

first phase. The final expression signatures were calculated by taking

a majority vote over the 3-level (+1/0/21) discretized expression for

all genes in each gene set.

Nearest Neighbor Methods
We compared MEDUSA to a simple correlation-based method,

where we predict a gene’s held-out expression levels based on the

‘‘nearest regulator’’ to its training set expression levels. We

calculated prediction accuracies for 10-fold cross validation using

held-out examples and by grouping replicates in the same fold. To

avoid any bias, we reported accuracies on target genes excluding

the 503 regulators. As in our main experiments, we performed 10-

fold cross-validation, and for each gene represented in the test set,

we considered its expression profile when restricted to examples

(i.e., experiments) in the training set and found the best-correlated

regulator across these experiments. The discrete expression level of

this regulator was then used to predict up/down expression in

experiments held out for this gene. As a similarity metric, we used

the normalized Hamming distance (excluding baseline examples)

for discretized expression data, where the inclusion/exclusion of

baseline examples was chosen in order to report the better results.

In cases where multiple regulators were equally distant from a

target gene, we randomly selected one amongst them as the

‘‘nearest regulator’’.

MEDUSA Software
An open source matlab implementation of the MEDUSA

algorithm is freely available for academic users and downloadable

from http://cbio.mskcc.org/leslielab/software/medusa.
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The MEDUSA Regulation Model
The MEDUSA algorithm models the control logic of transcrip-

tional regulation in the form of an alternating decision tree (ADT).

An ADT is a generalization of a decision tree that consists of

alternating layers of decision nodes and prediction nodes. Decision

nodes ask yes/no questions based on particular features. Prediction

nodes contain a real-valued score contribution associated with the

yes or no answer. Unlike regular decision trees, which make yes/no

predictions, ADTs generate real-valued prediction scores whose sign

gives the up/down prediction and whose size gives a measure of

confidence in that prediction. ADTs do not necessarily correspond to

a nested set of binary partitions of the example space like regulator

decision trees; that is, there can be more than one decision node

beneath a prediction node, and more than one of these decision node

conditions can be true for a given example.

Given the promoter sequence of a gene and the expression level of

the regulators in an experiment, the MEDUSA ADT predicts up/

down regulation of the gene in this experiment using yes/no

questions of the form, ‘‘Is motif m present in the upstream region of

the gene and is the state of regulator r up (or down) in that

experiment?’’, in the decision nodes. If the answer is ‘‘yes’’, we add

the associated real value score contribution to the overall prediction

score for the example, and we continue down to the next decision

node; for greater interpretability, we abstain if the answer to the

decision node condition is ‘‘no’’; that is, we contribute zero to the

prediction score. To compute the prediction score for a gene-

experiment example, we start at the root node and recursively check

which decision nodes we can pass through by answering ‘‘yes’’ to the

condition, working from the top to the bottom of the ADT; the final

prediction score is the sum of all the score contributions in all paths in

the ADT that we visit in this process.

More formally, the ADT takes the feature representation xge of the

gene-experiment pair (g,e)—namely the promoter sequence for gene g

and the vector of expression states of regulators in experiment e—and

computes a prediction score F xge

� �
~
P

t atht xge

� �
, a weighted sum

of weak rules ht, where t is an index over paths in the tree. If c is a

boolean condition, then define h[c] to be the weak rule that evaluates

to 1 if the c is true and to 0 if c is false, i.e., h[c](xge) = 1(0) exactly when

c = T(F) for example xge. If the t-th path has length l and corresponds

to a sequence of decision nodes with conditions c1,c2,…,cl, then the

weak rule ht = h[c1 ‘ c2 ‘ … ‘ cl] corresponds to the conjunction of

these conditions. The weight at is the score contribution in the

prediction node for the lowest (depth l) decision node. The sign of the

prediction score F (xge) yields the up/down prediction for the example.

Learning Predictive Models
We learn the gene regulation program F (xge) in two phases. In

the first phase, we input discretized regulator and target gene

expression data along with target gene promoter sequences to the

core MEDUSA algorithm to discover DNA motifs and assemble

an initial ADT model. The core algorithm is described below. In

the second phase, we take the motif hits learned in the first ADT,

together with discretized target and regulator expression data and

ChIP chip occupancy data, to learn a stabilized ADT, as described

in the next section.

To learn the ADT in the first training phase, we use a training set

{xge, yge} of labeled examples, where xge is the feature representation of

the target gene-experiment pair (g,e) (promoter sequence of g and

vector of expression states of regulators in experiment e), labeled as

yge = +1 if the gene is up-regulated in the experiment and yge = 21 if it

is down-regulated. Examples that are not significantly differentially

expressed (‘‘baseline’’) are excluded from the training set. MEDUSA

uses a supervised learning algorithm based on boosting to iteratively

build an alternating decision tree (ADT) that represents a gene

regulation model for all target genes and experimental conditions.

MEDUSA learns binding site motifs from the target gene promoter

sequences while building the ADT, but the same ADT learning

algorithm can be run using a fixed set of motifs as an input [40,41].

In our hypoxia experiments, the training set consisted of 13,093

differentially expressed gene-experiment instances.

Boosting is a general machine learning algorithm for binary

prediction problems. The basic idea is to iteratively apply a simple

discriminative learning algorithm, called the weak learner, to

different weightings of the same training set. At each iteration

t = 1…T, boosting selects a weak rule ht that optimizes an

exponential loss function for the current weights; then weights wge

are recalculated so that examples xge that were misclassified by ht are

more highly weighted. Finally, all of the weak rules are combined

into a single strong rule using a weighted majority vote. Empirically,

boosting often learns to make large-margin (confident) predictions on

the training set, which is theoretically linked to its ability to obtain

good generalization on test data even when the feature space is very

high dimensional (that is, it avoids over-fitting the training data).

Detailed pseudocode for the core MEDUSA algorithm is given

in Figure 9. Briefly, each iteration t of boosting adds a new

decision node—corresponding to a binding site motif m, coupled

with a regulator r whose state s (either up or down) helps predict

up/down regulation of target genes—and a prediction node to a

gene regulation model described by an ADT. Each motif is either

a k-length sequence (‘‘k-mer’’), a dimer, or a PSSM. The weak rule

ht defined by the decision node depends both on the motif-

regulator condition that it tests and on the position at which it is

placed in the ADT. We define the precondition c1 to be the

conjunction of conditions in decision nodes along the path to the

existing prediction node under which the new decision node is

placed, and we write c2 = c2 (m, r, s) as the condition tested in the

new decision node. Then the corresponding weak rule is ht = [c1 ‘
c2], and the prediction node value at can be computed from the

weight of the correct and incorrect training predictions made by ht

(see Figure 9). The motif m added at iteration t is learned in two

stages. First, the algorithm considers all deterministic motifs (k-

mers or dimers) md and optimizes boosting loss over choices of

preconditions c1 and new conditions c2 = c2 (m, r, s), yielding

optimal precondition c�1, regulator r�1 and state s*. Second,

candidate PSSMs are generated by considering the top-ranked

deterministic motifs mj
d

n o
j~1...K

generated in the first stage and

performing hierarchical agglomeration (see Figure 9). Optimizing

boosting loss over candidate PSSMs and choices of thresholds for

the log-odds score for each of these PSSMs yields an optimal

probabilistic motif m�p and threshold h*. This motif is used for the

new decision and prediction nodes if its loss is better than the best

deterministic motif m1
d .

We ran the core MEDUSA algorithm for 450 iterations to

obtain a set of 450 PSSMs, their targets and thresholds along with

an initial ADT. We decided on the stopping criterion based on the

number of iterations required for the mean test-loss on cross-

validated folds to plateau.

Stabilized Predictive Models
In standard boosting, features that are correlated with the single

best feature at a particular round of the algorithm are decorrelated in

the next round of boosting and may fail to be captured by the model.

While this possible consequence does not affect prediction accuracy,

we may lose biologically important features that are correlated to the

ones selected by the algorithm. To address this issue, we previously

introduced a stabilized variant of boosting that can be used with

ADT learning for modeling gene regulation [41]. The main idea of
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Figure 9. Pseudocode for the MEDUSA learning algorithm. The figure gives detailed pseudocode for the core MEDUSA algorithm which
learns DNA motifs de novo from promoter sequences and assembles motifs and regulators into an alternating decision tree (ADT) for predicting up/
down regulation of target genes.
doi:10.1371/journal.pcbi.1000224.g009
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stabilized boosting is to allow a set of correlated features, rather than

single features, to be included at nodes of the tree. We average the

prediction of several weak rules in the case where the rules with

smallest boosting loss are highly correlated with each other.

More precisely, at each iteration of ADT learning, we find the

optimal precondition c�1 and new decision node condition c�2, and

we first decide whether to stabilize the node by looking for

conditions correlated to c�2. We stabilize only if the weak rule

h�~h c�1 ^ c�2
� �

itself provides a significant advantage over random

guessing, namely if

1

2
Wz c�1 ^ c�2

� �
{W{ c�1 ^ c�2

� ��� ��§g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
g,eð Þ:c�

1
xgeð Þ~T w2

geP
g,eð Þ:c�

1
xgeð Þ~T wge

� �2

vuuut
where g1 is a parameter and other notation is as defined in

Figure 9. If this condition is satisfied, we look for additional

conditions c2 such that the weight of the symmetric difference of

the examples where conditions c�1 ^ c�2 and c�1 ^ c2 hold is

sufficiently small, i.e.,

W c�1 ^ c�2
� �

7 c�1 ^ c2

� �� �
ƒg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
g,eð Þ:c�

1
xgeð Þ~T w2

geP
g,eð Þ:c�

1
xgeð Þ~T wge

� �2

vuuut
where g2 is a second parameter. We then average over the weak

rules corresponding to c�1 ^ c2 as follows. For a condition c, write

the coefficient of the corresponding weak rule h as

ah~
1

2
ln

Wz cð Þ
W{ cð Þ. For the set of weak rules h~h c�1 ^ c2

� �	 

, we

define a new stabilized rule havg that takes a robust majority vote

over the set of weak rules as follows:

havg xð Þ~ 1,
P

h ahh xð Þ
�� ��wh

0, otherwise

(

where we set h~

P
h

ahj j{minh ahj jð Þ
2

. In our experiments, we use

g1 = g2 = 0.1. Theoretical motivation for the stabilized boosting

equations can be found in our earlier work [41].

Stabilized boosting retains correlated features, so that in post-

processing we obtain more stable ranked lists of regulator and

motif features. The improved stability of the prediction tree allows

us to perform detailed condition-specific post-processing of target

gene sets.

For the second phase of training on the hypoxia data, we used

the stabilized boosting algorithm again for 450 iterations to relearn

the prediction tree using the motif hits learned in the initial

MEDUSA run together with promoter occupancy data for

transcription factors from ChIP-chip experiments. Here, we view

a promoter sequence as either as bound by a transcription factor

(TF) in the ChIP assay by thresholding on the p-value for the ChIP

chip occupancy ratio. We note that the stabilized decision nodes in

the ADT often contained a set of conditions involving a single

motif paired with different regulators. This final model was used

for all post-processing analysis (see Dataset S5).

Feature Extraction and Significance
The margin of a gene-experiment example is given by ygeF (xge),

where F (xge) is the real-valued score assigned to the example by the

ADT and yge is its binary label (+1 for up or 21 for down). The

margin is positive if the ADT correctly predicts the example, and the

size of the margin can be interpreted as the confidence of the

prediction [79]. Motivated by theoretical work that links large

margins on the training set with good generalization to test data, we

developed a margin-based score to evaluate the importance of a

given regulator to the overall predictive model. For a regulator r, we

write FrR0 (xge) to be the modified score that the ADT would assign a

given gene-experiment example if we artificially set the regulator’s

expression level to baseline in the experiment. Equivalently, we could

obtain the modified score for the example by eliminating all nodes

containing r, and all subtrees rooted at these nodes, from the ADT,

and then computing the prediction score. To assess the significance

of r for a particular set of genes G in a particular set of experiments E

in the training set, we computed the following margin-based score:

1

g,eð Þ : g[G,e[Ef gj j
X

g[G,e[E

yge F xge

� �
{Fr?0 xge

� �� �

This score will again be positive if regulator r contributes on

average to correct predictions, and the size of the score can be used

to rank regulators by predictive importance. Rather than using a

stringent threshold, we collected all regulators whose margin-based

score is above 0; we reasoned that since the score only measures

whether the regulator independently affects the prediction score, a

higher threshold could lose more subtle regulators that act

cooperatively with other factors. We also note that stabilized

boosting retains multiple correlated features in the ADT nodes,

which means that all statistically important regulators are identified

by the margin score; without stabilization, a regulator might not be

included in the tree if it is tightly correlated with another regulator

that has been included. For example, if two regulators are perfectly

correlated across all experiments, we expect them to occur in exactly

the same nodes and therefore give the same margin score.

Supporting Information

Dataset S1 Normalized gene expression data for all experiments

(processed using RMA Express)

Found at: doi:10.1371/journal.pcbi.1000224.s001 (2.76 MB ZIP)

Dataset S2 Discretized gene expression data for all experiments

that is used in the MEDUSA learning procedure

Found at: doi:10.1371/journal.pcbi.1000224.s002 (0.23 MB ZIP)

Dataset S3 log2 of fold change of gene expression data for all

experiments that is used in the MEDUSA learning procedure

Found at: doi:10.1371/journal.pcbi.1000224.s003 (1.29 MB ZIP)

Dataset S4 List of differentially expressed genes (UP -

upregulated, DOWN - downregulated) in each of the conditions

discussed in the paper

Found at: doi:10.1371/journal.pcbi.1000224.s004 (0.05 MB ZIP)

Dataset S5 Properties of the alternating decision tree learned by

MEDUSA. The file lists the regulators and motifs learned by

MEDUSA at each iteration. It also lists nodes that precede and

follow each node in the ADT.

Found at: doi:10.1371/journal.pcbi.1000224.s005 (0.03 MB ZIP)

Figure S1 Distribution of prediction scores for +1 (red curve), 0

(blue curve), 21 (green curve) examples.

Found at: doi:10.1371/journal.pcbi.1000224.s006 (0.18 MB TIF)

Figure S2 Scatter plot of true expression values versus

prediction scores F(x). The scatter plot shows a high correlation

between prediction scores (y-axis) and true log expression values (y-
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axis) for all examples. The red, blue, and green points represent

the +1, 0, and 21 labeled examples, respectively.

Found at: doi:10.1371/journal.pcbi.1000224.s007 (1.90 MB TIF)

Figure S3 Heat map of target genes that are anaerobically induced

in HAP1 and Dhap1 cells, and those that are suppressed by heme.

Significant predictive regulators and sequence motifs are also shown.

Found at: doi:10.1371/journal.pcbi.1000224.s008 (1.55 MB TIF)

Figure S4 Heat map of target genes that are anaerobically induced

in HAP1 and Dhap1 cells, and those that are induced by Co2+ ion.

Significant predictive regulators and sequence motifs are also shown.

Found at: doi:10.1371/journal.pcbi.1000224.s009 (1.51 MB TIF)

Figure S5 Heat map of target genes that are anaerobically

suppressed in HAP1 and Dhap1 cells, and those that are suppressed

by Co2+ ion. Significant predictive regulators and sequence motifs

are also shown.

Found at: doi:10.1371/journal.pcbi.1000224.s010 (1.66 MB TIF)

Figure S6 Conditions used in microarray expression experi-

ments and identified target genes.

Found at: doi:10.1371/journal.pcbi.1000224.s011 (0.59 MB TIF)

Figure S7 Venn diagrams showing the numbers of oxygen-

regulated, heme-regulated, and Co2+-inducible genes in HAP1 and

Dhap1 cells. (A) A Venn diagram illustrating the numbers of

hypoxically suppressed (oxygen-induced) genes in HAP1 and Dhap1

cells, and heme-induced genes. (B) A Venn diagram illustrating the

numbers of hypoxically induced (oxygen-suppressed) genes in HAP1

and Dhap1 cells, and heme-suppressed genes. (C) A Venn diagram

illustrating the numbers of hypoxically induced (oxygen-suppressed)

genes in HAP1 cells at 1.5 or 6 hours after shifting to anaerobic growth

conditions. (D) A Venn diagram illustrating the numbers of

hypoxically suppressed (oxygen-induced) genes in HAP1 cells at 1.5

or 6 hours after shifting to anaerobic growth conditions. (E) A Venn

diagram illustrating the numbers of hypoxically induced (oxygen-

suppressed) genes in HAP1 and Dhap1 cells, and Co2+-inducible genes.

Found at: doi:10.1371/journal.pcbi.1000224.s012 (1.42 MB TIF)

Figure S8 The functional categorization of identified oxygen-

regulated, heme-regulated, and Co2+-inducible genes. This figure

illustrates the enriched Gene Ontology process annotations for

selected sets of the differentially expressed target gene Venn

diagrams of Figure S7. Each row represents a set of genes, and

each column represents a GO process annotation. The set names

are to the left of the color matrix. The GO annotations are shown

below the color matrix. Each element of the color matrix illustrates

the p-value of enrichment. The colorbar on the right shows the

colors used for the range of p-values. The following naming

convention is used for the gene sets. Each set represents the

intersection of sets of genes that are differentially expressed in

different experimental contexts. Each experimental context is

represented by an identifier (e.g., Anaerobic represents the

hypoxia condition) followed by up or down arrows denoting up-

regulation or down-regulation of the genes in that context. The

symbol ‘,’ is the logical operation ‘NOT’, while the up and down

arrows specify whether the set of genes up or downregulated in

that condition. For example, AnaerobicqAnaerobic (Dhap1)

q,Coq refers to the set of target genes that are hypoxically

induced both in HAP1 and Dhap1 cells but are not Co2+-inducible.

The p-values shown are not corrected for multiple comparisons.

Found at: doi:10.1371/journal.pcbi.1000224.s013 (1.46 MB TIF)

Figure S9 Comparison of MacIsaac et al. PSSMs to PSSMs

learned by MEDUSA. MacIsaac et al. used ChIP-chip data to

identify potential binding sites for 124 transcription factors. We

use the symmetrized Kullback-Leibler (KL) distance to identify the

best matching MEDUSA PSSM to each of these 124 PSSMs. The

transcription factors are listed in ascending order by the KL

distance to the best match. Column 3 shows the MacIsaac et al.

PSSMs and Column 4 shows the best matching MEDUSA PSSM.

Found at: doi:10.1371/journal.pcbi.1000224.s014 (1.99 MB TIF)

Figure S10 Positive tail of the empirical null distribution for

normalized margin scores. The figure shows the normalized

histogram for positive margin scores (margin score .0) for all gene

sets in all the randomization trials. We normalize by dividing the

frequency in each bin by the total number of data points (|margin

scores .0|+|margin scores #0|). The highest observed margin

score computed from the randomized data was 0.53. The red

points are the 54 regulators with positive margin score using the

true labels; if a regulator was identified for multiple gene sets, its

most significant p-value is shown. We see that most of these points

lie far into the positive tail of the distribution.

Found at: doi:10.1371/journal.pcbi.1000224.s015 (10.19 MB TIF)

Figure S11 Empirical p-values for the (normalized) margin

score. We calculate a p-value for each margin score h as the

fraction of data points in the randomization trials with margin

score .h. The 54 regulators with positive margin scores using true

labels have low p-values. If a regulator was identified for multiple

gene sets, its most significant p-value is shown.

Found at: doi:10.1371/journal.pcbi.1000224.s016 (10.19 MB TIF)

Figure S12 Estimated false discovery rate for choices of p-value

threshold for 54 identified regulators. We obtain p-values for all

507 regulators in each of the 12 gene sets. We then apply the step-

wise Benjamini-Hochberg procedure to this set of p-values to

obtain the FDR corresponding to each p-value cutoff. The figure

shows the best margin score, corresponding p-value and FDR for

the 54 regulators with positive margin score in at least one gene

set. The top 16 regulators correspond to very small FDRs and

include many known hypoxia regulators such as Upc2, Hap4,

Mga2, Rox1, and Hap1, as well as novel regulators.

Found at: doi:10.1371/journal.pcbi.1000224.s017 (1.34 MB TIF)

Text S1 Supplemental methods. This file contains additional

supplemental information such as additional context-specific

results and detailed cross-validation and prediction accuracy

results and comparisons.

Found at: doi:10.1371/journal.pcbi.1000224.s018 (3.97 MB

DOC)
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