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Start with the conclusions

Practice:
I Some problems are “global”:

I total click-through rate; total number of stars; human
population genetics

I Some problems are “local”:
I meaningful communities; quasars that identify new physics;

personalized medicine

Theory:
I Most objectives are global:

I global partition, global eigenvetor, global minimum
I Some objectives are local:

I find good cluster near a seed set
I Most algorithms are local:

I take one step of gradient descent
I but theory then makes a statement about global objective
I but practice then deviates from theory and applies it locally

Question: How to go forward?
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Matrix computations 
Eigendecompositions, QR, SVD, least-squares, etc. 

Traditional algorithms: 
•  compute “exact” answers to, say, 10 digits as a black box 

•  assume the matrix is in RAM and minimize flops 

But they are NOT well-suited for: 
•  with missing or noisy entries 

•   problems that are very large 

•  distributed or parallel computation 

•  when communication is a bottleneck 

•  when the data must be accessed via “passes” 



The general idea ... 
•  Randomly sample columns/rows/entries of the matrix, with 
carefully-constructed importance sampling probabilities, to 
form a randomized sketch  

•  Preprocess the matrix with random projections, to form a 
randomized sketch by sampling columns/rows uniformly  

•  Use the sketch to compute an approximate solution to the 
original problem w.h.p.  

•  Resulting sketches are “similar” to the original matrix in 
terms of singular value and singular vector structure, e.g., 
w.h.p. are bounded distance from the original matrix 



History of Randomized Matrix Algs 

How to “bridge the gap”? 
•  decouple randomization from linear algebra 

•  importance of statistical leverage scores! 

Theoretical origins 
•  theoretical computer 
science, convex analysis, etc. 

•  Johnson-Lindenstrauss 

•  Additive-error algs 

•  Good worst-case analysis 

•  No statistical analysis 

Practical applications 
•  NLA, ML, statistics, data 
analysis, genetics, etc 

•  Fast JL transform 

•  Relative-error algs 

•  Numerically-stable algs 

•  Good statistical properties 



Statistical leverage, coherence, etc. 

Definition: Given a “tall” n x d matrix A, i.e., with n > d, let U 
be any n x d orthogonal basis for span(A), & let the d-vector U(i) 
be the ith row of U.  Then: 

•  the statistical leverage scores are λi = ||U(i)||2
2 , for i ε {1,…,n} 

•  the coherence is γ = maxi ε {1,…,n} λi  

•  the (i,j)-cross-leverage scores are U(i)
T U(j) = <U(i) ,U(j)> 

Note: There are extension of this to: 

•  “fat” matrices A, with n, d are large and low-rank parameter k  

•  L1 and other p-norms 

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)   
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Local versus global

Local or small-scale properties (the proverbial needle in haystack):

I In machine learning: nearest neighbor models/rules

I In graph analytics: ego networks near a person in a social network

I This information is often the most reliable

Global or large-scale properties (the proverbial haystack):

I In machine learning: global latent factor models

I In graph analytics: large-scale community structure in social network

Algorithmic/statistical tools make strong local-global assumptions:

I Data are some large-scale structure with lots (enough to average
over to go to some asymptotic limit) of small-scale noise

I Recursive spectral paritioning

I Typical ML objectives, e.g., MSE, bias toward large classes
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Networks and networked data

Lots of “networked” data!!

I technological networks (AS,
power-grid, road networks)

I biological networks (food-web,
protein networks)

I social networks (collaboration
networks, friendships)

I information networks
(co-citation, blog cross-postings,
advertiser-bidded phrase graphs
...)

I language networks (semantic
networks ...)

I . . .

Interaction graph model of networks:

I Nodes represent “entities”

I Edges represent “interaction”
between pairs of entities
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Possible ways a graph might look

(a) Low-dimensional structure (b) Core-periphery structure

(c) Expander or complete graph (d) Bipartite structure
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Scatter plot of λ2 (the “Fiedler value”) for real networks

Conventional wisdom: down is good.

Question: does this plot really tell us much about these networks?



14/42

Communities, conductances, and NCPs

Let A be the adjacency matrix of G = (V ,E ).
The conductance φ of a set S of nodes is

φ(S) =

∑
i∈S,j /∈S Aij

min{A(S),A(S̄)}
, where A(S) =

∑
i∈S

∑
j∈V

Aij

The Network Community Profile (NCP) of the graph is

Φ(k) = min
S⊂V ,|S |=k

φ(S)

Just as conductance captures a Surface-Area-To-Volume, the NCP

I captures a size-resolved Surface-Area-To-Volume notion

I captures the idea of local size-resolved bottlenecks to diffusion
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Three different types of real networks
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Information propagates local-to-global in different networks
in different ways

Figure: Top: CA-GrQc; Middle: FB-Johns55; Bottom: US-Senate.
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Summary of lessons learned

Local-global properties of real data are very different

I than practical/theoretical people implicitly/explicitly assume

Local graph algorithms (local spectral methods) were big winner

I For both algorithmic and statistical reasons

Little design decisions made a big difference

I Details of how deal with truncation and boundary conditions
are not second-order issues when graphs are expander-like

Approximation algorithm usefulness uncoupled from theory

I Often useful when they implicitly regularize
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Some basics on kernels and SPSD matrices

I Given ~x1, . . . , ~xn ∈ Rd and κ : Rd × Rd → R, the n × n matrix with
elements Aij = κ(~xi , ~xj) is the kernel matrix of κ w.r.t. ~x1, . . . , ~xn.

I Appropriate κ ensures A is SPSD
I Aij measure a (κ-defined) similarity between points i and j .
I κ determines a feature map Φκ : Rd → R∞ s.t. similarity of ~xi

and ~xj in feature space is measure by Aij = 〈Φκ(~xi ),Φκ(~xj)〉.

I When κ is the usual Euclidean inner-product, so that Aij = 〈~xi , ~xk〉,
then A is called a Linear Kernel matrix.

I Gaussian RBF Kernel matrices, defined by Aσij = exp

(
−‖~xi−~xj‖2

2

σ2

)
,

correspond to the similarity measure κ(~x , ~y) = exp(−‖~x − ~y‖2
2/σ

2).

I σ defines “size scale” over which points “see” each other.
I Can “sparsify” A by decreasing σ.
I Can also sparsify the matrix A by zeroing out entries.



22/42

Size-dependence of optimal neighbor width
Wang, Li, Mahoney, and Darve (2015)

EMG Physical Action Data Set

I 10 normal & 10 aggressive physical actions that measure human activity.

Class 1 2 3 4 5 6 7 8 9

r2
i 1e-4 3e-4 1.2e-3 2.8e-3 2.6e-2 2.7e-2 3.6e-2 4.6e-1 1.0

d2
i 3e-4 2.3e-3 9.9e-3 1.7e-2 1.9e-1 2.3e-1 1.4e-1 1.4 2.1

Class 10 11 12 13 14 15 16 17 18 19

r2
i 1.0 1.6 1.9 2.2 2.2 2.6 2.8 2.9 3.0 3.1

d2
i 2.0 3.4 4.4 4.2 4.3 5.3 5.4 5.4 5.7 5.9

Table: Pair-wise distance (di ) and distance to center (ri ) for each class

We order the classes by their “size”
ri and group them as follows:

g1 = smallest class,

g2 = union(smallest & 2nd smallest class),

..., g20 = all the data
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Use case1: Galactic spectra from SDSS

xi ∈ R3841, N ≈ 500k

photon fluxes in ≈ 10 Å
wavelength bins

preprocessing corrects for
redshift, gappy regions

normalized by median flux
at certain wavelengths
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0
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4

6
raw spectrum in observed frame

3000 4000 5000 6000 7000 8000 9000
0

2
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6
raw spectrum in rest frame

3000 4000 5000 6000 7000 8000 9000
0

2

4

6
gap−corrected spectrum in rest frame

1Also results in neuroscience as well as genetics and mass spec imaging.
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Global embedding: effect of k

Figure: Eigenvectors 3 and 4 of Lazy Markov operator, k = 2 : 2048
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Global embedding: average spectra
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MOV optimization approach to local spectral methods
(Mahoney, Orecchia, and Vishnoi, 2009; Hansen and Mahoney, 2013; Lawlor, Budavari, Mahoney, 2015)

Suppose we have:

1. a seed vector s = χS , where S is a subset of data points

2. a correlation parameter κ

MOV objective. The first semi-supervised eigenvector w2 solves:

minimize xTLx

subject to xTDx = 1

xTD1 = 0

xTDs ≥
√
κ

Similarly for wt with addition constraints xTDwj = 0, j < t.

Theorem. Solution can be found by solving a linear equation. It is
“quadratically good” (with a local version of Cheeger’s Inequality).
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Local embedding: scale parameter and effect of seed
For an appropriate choice of c and γ = γ(κ) < λ2, one can show

w2 = c(L− γD)+Ds

= c(LG − γLkn)+Ds

(In practice, binary search to find “correct” γ.)

Figure: (left) Global embedding with seeds in black. (middle, right)
Local embeddings using specified seeds.
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Pictorial illustration of what can be discovered
Mahoney, Orecchia, and Vishnoi, (2009); Maji, Vishnoi,and Malik (2011); Hansen and Mahoney, (2013)

I Cannot find the tiger with global eigenvectors.

I Can find the tiger with our LocalSpectral method!



Outline

Randomized Numerical Linear Algebra

Structure in Social and Other Informatics Graphs

Why Deep Learning Works

5/6



Motivations: towards a Theory of Deep Learning
Theoretical: deeper insight into Why Deep Learning Works?

convex versus non-convex optimization?

explicit/implicit regularization?

is / why is / when is deep better?

VC theory versus Statistical Mechanics theory?

. . .

Practical: use insights to improve engineering of DNNs?
when is a network fully optimized?

can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?

. . .

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 4 / 64



Motivations: towards a Theory of Deep Learning

DNNs as
spin glasses,
Choromanska
et al. 2015

Looks exactly
like old protein
folding results
(late 90s)

Energy Landscape Theory

Completely
different
picture
of DNNs

Raises broad questions about Why Deep Learning Works

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 5 / 64



Set up: the Energy Landscape
Energy/Optimization function:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Train this on labeled data {di , yi} ∈ D, using Backprop, by minimizing loss L:

min
Wl ,bl

L

(∑
i

EDNN(di)− yi

)

EDNN is “the” Energy Landscape:

The part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined
by the data {di , yi} ∈ D

Pass the data through the Energy function EDNN multiple times, as we run
Backprop training

The Energy Landscape∗ is changing at each epoch

∗i.e., the optimization function that is nominally being optimized
Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 6 / 64



Motivations: what is regularization?

(a) Dropout. (b) Early Stop-
ping.

(c) Batch Size. (d) Noisify Data.

Every adjustable knob and switch—and there are many†—is regularization.

†https://arxiv.org/pdf/1710.10686.pdf
Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 9 / 64



How we will study regularization
The Energy Landscape is determined by layer weight matrices WL:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Traditional regularization is applied to WL:

min
Wl ,bl

L
(∑

i
EDNN(di)− yi

)
+ α

∑
l
‖Wl‖

Different types of regularization, e.g., different norms ‖ · ‖, leave different
empirical signatures on WL.

What we do:
Turn off “all” regularization.
Systematically turn it back on, explicitly with α or implicitly with
knobs/switches.
Study empirical properties of WL.

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 13 / 64



Lots of DNNs Analyzed
Question: What happens to the layer weight matrices WL?

(Don’t evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.

Two other small models:
3-Layer MLP
Mini AlexNet

Conv2D  MaxPool Conv2D MaxPool       FC1 FC2 FC

Wide range of state-of-the-art pre-trained models:
AlexNet, Inception, etc.

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 15 / 64



Matrix complexity: Singular/Eigen Value Densities

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values νi and associated Eigenvalues λi = ν2i .

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 20 / 64



Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12µ+1)
PL

∼ λ−( 12µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



Experiments: just apply this to pre-trained models
https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-...

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 31 / 64

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more- ... 


RMT: LeNet5 (an old/small example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Marchenko-Pastur Bulk + Spikes

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 33 / 64



RMT: AlexNet (a typical modern DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Marchenko-Pastur Bulk-decay + Heavy-tailed

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 34 / 64



RMT: InceptionV3 (a particularly unusual example)

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Marchenko-Pastur bulk decay, onset of Heavy Tails

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 35 / 64



RMT-based 5+1 Phases of Training

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 37 / 64



RMT-based 5+1 Phases of Training
We model “noise” and also “signal” with random matrices:

W 'Wrand + ∆sig . (1)

Operational
Definition

Informal
Description
via Eqn. (1)

Edge/tail
Fluctuation
Comments

Illustration
and

Description

Random-like ESD well-fit by MP
with appropriate λ+

Wrand random;
‖∆sig‖ zero or small

λmax ≈ λ+ is
sharp, with
TW statistics

Fig. 10(a)

Bleeding-out
ESD Random-like,
excluding eigenmass

just above λ+

W has eigenmass at
bulk edge as

spikes “pull out”;
‖∆sig‖ medium

BPP transition,
λmax and
λ+ separate

Fig. 10(b)

Bulk+Spikes
ESD Random-like
plus ≥ 1 spikes
well above λ+

Wrand well-separated
from low-rank ∆sig ;
‖∆sig‖ larger

λ+ is TW,
λmax is
Gaussian

Fig. 10(c)

Bulk-decay
ESD less Random-like;
Heavy-Tailed eigenmass
above λ+; some spikes

Complex ∆sig with
correlations that

don’t fully enter spike

Edge above λ+

is not concave Fig. 10(d)

Heavy-Tailed
ESD better-described
by Heavy-Tailed RMT
than Gaussian RMT

Wrand is small;
∆sig is large and
strongly-correlated

No good λ+;
λmax � λ+ Fig. 10(e)

Rank-collapse ESD has large-mass
spike at λ = 0

W very rank-deficient;
over-regularization — Fig. 10(f)

The 5+1 phases of learning we identified in DNN training.



Bulk+Spikes: Small Models

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|2

N

)(
1 + N

|∆|2

)
|∆| > (Q)−

1
4

Bulk → Spikes
↙

Smaller, older models can be described perturbatively with Gaussian RMT

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 41 / 64



Bulk+Spikes: Small Models ∼ Tikhonov regularization

λ+

simple scale threshold

x =
(

X̂ + αI
)−1

ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Smaller, older models like LeNet5 exhibit traditional regularization

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 42 / 64



Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

Can model strongly-correlated systems by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc)

AlexNet
ReseNet50
Inception V3
DenseNet201
...

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 43 / 64



Heavy-tailed Self-regularization

Summary of what we “suspect” today
No single scale threshold.
No simple low rank approximation for WL.
Contributions from correlations at all scales.
Can not be treated perturbatively.

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 44 / 64



Implications: RMT and Deep Learning

Where are the local minima?
How is the Hessian behaved?
Are simpler models misleading?
Can we design better learning
strategies?

(tradeoff between Energy and Entropy minimization)

How can RMT be used to understand the Energy Landscape?

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 58 / 64



Implications: Minimizing Frustration and Energy Funnels
As simple as can be?, Wolynes, 1997

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 59 / 64



Implications: Energy Landscapes of Heavy-tailed Models?

Compare with (Gaussian) Spin Glass
model of Choromanska et al. 2015

Spin Glasses with Heavy Tails?
Local minima do not concentrate
near the ground state
(Cizeau and Bouchaud 1993)

If Energy Landscape is more funneled, then no “problems” with local minima!

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 61 / 64
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Conclusions

Practice:
I Some problems are “global”:

I total click-through rate; total number of stars; human
population genetics

I Some problems are “local”:
I meaningful communities; quasars that identify new physics;

personalized medicine

Theory:
I Most objectives are global:

I global partition, global eigenvetor, global minimum
I Some objectives are local:

I find good cluster near a seed set
I Most algorithms are local:

I take one step of gradient descent
I but theory then makes a statement about global objective
I but practice then deviates from theory and applies it locally

Question: How to go forward?
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