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Start with the conclusions

Practice:
» Some problems are “global”:
» total click-through rate; total number of stars; human
population genetics
» Some problems are “local”:
» meaningful communities; quasars that identify new physics;
personalized medicine

Theory:

> Most objectives are global:
> global partition, global eigenvetor, global minimum

» Some objectives are local:
» find good cluster near a seed set

» Most algorithms are local:
> take one step of gradient descent
» but theory then makes a statement about global objective
» but practice then deviates from theory and applies it locally

Question: How to go forward?



Outline

Randomized Numerical Linear Algebra



] Matrix computations

Eigendecompositions, QR, SVD, least-squares, etc.

Traditional algorithms:
« compute "exact” answers to, say, 10 digits as a black box

* assume the matrix is in RAM and minimize flops

But they are NOT well-suited for:
* with missing or noisy entries
* problems that are very large
- distributed or parallel computation
« when communication is a bottleneck

 when the data must be accessed via "passes”



] The general idea ...

* Randomly sample columns/rows/entries of the matrix, with
carefully-constructed importance sampling probabilities, to
form a randomized sketch

* Preprocess the matrix with random projections, to form a
randomized sketch by sampling columns/rows uniformly

* Use the sketch to compute an approximate solution to the
original problem w.h.p.

* Resulting sketches are "similar” to the original matrix in
terms of singular value and singular vector structure, e.qg.,
w.h.p. are bounded distance from the original matrix



] History of Randomized Matrix Algs

Theoretical origins  \7 & __~ Practical applications

* NLA, ML, statistics, data
analysis, genetics, etfc

* theoretical computer
science, convex analysis, eftc.

« Johnson-Lindenstrauss e Fast JL transform

* Relative-error algs

« Additive-error algs
* Good worst-case analysis * Numerically-stable algs
* No statistical analysis * Good statistical properties

| N—

How to "bridge the gap"?

« decouple randomization from linear algebra

* importance of statistical leverage scores!



] Statistical leverage, coherence, etc.

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)

Definition: Given a “tall” n x d matrix A, i.e., withn>d, let U
be any n x d orthogonal basis for span(A), & let the d-vector U,
be the ith row of U. Then:

* the statistical leverage scores are A; = [|Ugl 1,2, forie{1,..,n}

g

* the (i,j)-cross-leverage scores are U™ Uy = <Uy Uy

Note: There are extension of this to:
« "“fat” matrices A, with n, d are large and low-rank parameter k

* L1 and other p-norms



Outline

Structure in Social and Other Informatics Graphs



Local versus global

Local or small-scale properties (the proverbial needle in haystack):
> In machine learning: nearest neighbor models/rules
> In graph analytics: ego networks near a person in a social network

» This information is often the most reliable

Global or large-scale properties (the proverbial haystack):
> In machine learning: global latent factor models

» In graph analytics: large-scale community structure in social network

Algorithmic/statistical tools make strong local-global assumptions:

> Data are some large-scale structure with lots (enough to average
over to go to some asymptotic limit) of small-scale noise

> Recursive spectral paritioning

> Typical ML objectives, e.g., MSE, bias toward large classes



Networks and networked data

Lots of “networked” data!!

>

technological networks (AS,
power-grid, road networks)

biological networks (food-web,
protein networks)

social networks (collaboration
networks, friendships)

information networks
(co-citation, blog cross-postings,
advertiser-bidded phrase graphs

)

language networks (semantic
networks ...)

Interaction graph model of networks:

» Nodes represent “entities”

» Edges represent “interaction”
between pairs of entities



Possible ways a graph might look

c) Expander or complete graph d) Bipartite structure



Scatter plot of A, (the “Fiedler value™) for real networks
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Conventional wisdom: down is good.

Question: does this plot really tell us much about these networks?



Communities, conductances, and NCPs

Let A be the adjacency matrix of G = (V, E).
The conductance ¢ of a set S of nodes is

_ Yiesjes A _ )
#(S) = i (A(S). A5} where A(S)_%;;/AU

The Network Community Profile (NCP) of the graph is

®(k) = Sc\ng\:k¢(S)

Just as conductance captures a Surface-Area-To-Volume, the NCP
> captures a size-resolved Surface-Area-To-Volume notion

> captures the idea of local size-resolved bottlenecks to diffusion



Three different types of real networks

10°

=)
|

conductance

=
=)
|

©

—— CA-GrQC

- - - FB-Jonnsss ||

US-SENATE

1073

(e) NCP: conductance value of best
conductance set, as function of size

100

10t

size

102

103

(h) FB-JOHNS55

104

T ey
10 El
2 F
R
g 10
=
x
k3]
Z 107! B
=
o
8
10-2 —— CA-GrQC |
- -~ FB-Jonns55 |
o e US-SENATE
10° 10t 102 103 104
size

(f) CRP: ratio of internal to external
conductance, as function of size

(i) US-SENATE



Information propagates local-to-global in different networks
in different ways

17/42



Summary of lessons learned

Local-global properties of real data are very different

» than practical /theoretical people implicitly/explicitly assume

Local graph algorithms (local spectral methods) were big winner

» For both algorithmic and statistical reasons

Little design decisions made a big difference

> Details of how deal with truncation and boundary conditions
are not second-order issues when graphs are expander-like

Approximation algorithm usefulness uncoupled from theory

» Often useful when they implicitly regularize



Some basics on kernels and SPSD matrices

> Given xi,...,%, € R? and k : R? x R — R, the n x n matrix with
elements Ajj = k(X;, X;) is the kernel matrix of kK w.r.t. X,...,%,.

» Appropriate x ensures A is SPSD

» Ajj measure a (k-defined) similarity between points i and ;.

» K determines a feature map ®,, : R — R> s.t. similarity of X;
and X; in feature space is measure by A = (P, (i), P.(X})).

- =

» When & is the usual Euclidean inner-product, so that A;; = (X, Xi),
then A is called a Linear Kernel matrix.

2212
> Gaussian RBF Kernel matrices, defined by A7 = exp (IXUQW ,

correspond to the similarity measure x(X, y) = exp(—||X — y||3/0?).

» o defines ‘size scale” over which points “see”" each other.
» Can “sparsify” A by decreasing o.
» Can also sparsify the matrix A by zeroing out entries.



Size-dependence of optimal neighbor width

Wang, Li, Mahoney, and Darve (2015)

EMG Physical Action Data Set
> 10 normal & 10 aggressive physical actions that measure human activity.

Class 1 2 3 4 5 6 7 8 9
2 led  3ed 123  2.8e-3 26e2 27e2 36e2 46el 1.0
d? 3e-4  23e3  99e3 17e2 19el 23el  ldel 1.4 2.1

Class 10 11 12 13 14 15 16 17 18 19
2 1.0 1.6 1.9 22 2.2 2.6 2.8 2.9 30 31
d? 2.0 3.4 44 4.2 43 5.3 5.4 5.4 57 5.9

Table: Pair-wise distance (d;) and distance to center (r;) for each class

We order the classes by their “size”
ri and group them as follows:

gl = smallest class,

g2 union(smallest & 2nd smallest class),

., 820 = all the data




Use case!: Galactic spectra from SDSS

xj € R3%4 N ~ 500k

photon fluxes in ~ 10 A
wavelength bins

preprocessing corrects for
redshift, gappy regions

normalized by median flux
at certain wavelengths

raw spectrum in observed frame
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Global embedding: effect of k

k=2
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Figure: Eigenvectors 3 and 4 of Lazy Markov operator, k = 2 : 2048



Global embedding: average spectra

Lazy Markov, k=32, autotuned
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MOV optimization approach to local spectral methods
(Mahoney, Orecchia, and Vishnoi, 2009; Hansen and Mahoney, 2013; Lawlor, Budavari, Mahoney, 2015)
Suppose we have:

1. a seed vector s = xs, where S is a subset of data points

2. a correlation parameter k

MOV objective. The first semi-supervised eigenvector w; solves:
minimize x ' Lx
subject to x'Dx =1
x"D1=0
x"Ds > \/k

Similarly for wy with addition constraints XTDW_,' =0, <t

Theorem. Solution can be found by solving a linear equation. It is
“quadratically good” (with a local version of Cheeger's Inequality).



Local embedding: scale parameter and effect of seed
For an appropriate choice of ¢ and 7 = (k) < A2, one can show

wa = c(L—~+D)"Ds
= ¢o(Lg —yLk,)"Ds

(In practice, binary search to find “correct” ~.)
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Figure: (left) Global embedding with seeds in black. (middle, right)
Local embeddings using specified seeds.



Pictorial illustration of what can be discovered

Mahoney, Orecchia, and Vishnoi, (2009); Maji, Vishnoi,and Malik (2011); Hansen and Mahoney, (2013)

F
. ‘- -
S SIS

» Cannot find the tiger with global eigenvectors.

» Can find the tiger with our LocalSpectral method!



Outline

Why Deep Learning Works



Motivations: towards a Theory of Deep Learning

Theoretical: deeper insight into Why Deep Learning Works?
@ convex versus non-convex optimization?
@ explicit/implicit regularization?
@ is / why is / when is deep better?
@ VC theory versus Statistical Mechanics theory?

Practical: use insights to improve engineering of DNNs?
@ when is a network fully optimized?

@ can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 4 /64



Motivations: towards a Theory of Deep Learning

DNNs as nhidden
spin glasses, e =
Choromanska 100
et al. 2015 | y | 0
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Raises broad questions about Why Deep Learning Works

Implicit Self-regularization in DNNs

Energy Landscape of Multiscale Spin Glass Model

September 2018

Completely
different
picture

of DNNs

5/ 64



Set up: the Energy Landscape

Energy/Optimization function:
Epnnv = ht(Wp x hp—1(Wi—1 x hp—»(---)+bi_1) + by)

Train this on labeled data {d;, y;} € D, using Backprop, by minimizing loss L:

V"J/Eg/ L <Z Epnn(d;) — }/i>

Epnn is “the” Energy Landscape:

@ The part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined
by the data {d;,y;} € D

@ Pass the data through the Energy function Epyy multiple times, as we run
Backprop training

@ The Energy Landscape® is changing at each epoch

*i.e., the optimization function that is nominally being optimized
Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 6/ 64



Motivations: what is regularization?

(a) Dropout. (b) Early Stop- (c) Batch Size. (d) Noisify Data.
ping.

Every adjustable knob and switch—and there are many'—is regularization.

Thttps://arxiv.org/pdf/1710.10686.pdf

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 9 /64



How we will study regularization
The Energy Landscape is determined by layer weight matrices W :
Epnn = he(Wp x h 1 (W1 x hp_o(---) +br1) +by)

Traditional regularization is applied to Wy:
Wig L (Z Epnn(di) — )/i> +ay [|w
1501 i /

Different types of regularization, e.g., different norms || -
empirical signatures on W,

What we do:

@ Turn off “all” regularization.

, leave different

@ Systematically turn it back on, explicitly with « or implicitly with
knobs/switches.

@ Study empirical properties of W/.

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 13 / 64



Lots of DNNs Analyzed
Question: What happens to the layer weight matrices W7

(Don'’t evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.
Two other small models:

@ 3-Layer MLP

@ Mini AlexNet

&

7 8
— s
4xax256 dxéx256 384 192 10

Comv2D
28x28x3  10x10x96 10x10x96

Conv2D MaxPool Conv2D MaxPool FCI FC2 FC

Wide range of state-of-the-art pre-trained models:

@ AlexNet, Inception, etc.
Mahoney (UC Berkeley)

Implicit Self-regularization in DNNs September 2018 15 / 64



Matrix complexity: Singular/Eigen Value Densities

W =UuUxv’ vi=Xji pi =3/ >V}
—1 W[Z2  >.v7
SW)= ————35 p;log p; = E—&=id
W)= fogtRiwy) 21 P98 P Re(W) = Jiypa = 5

MLP3 FC2: Density, Singular Values pemp(v) MLP%ECZ: Empirical Spectral Density Pemp(A
= e
00 05 10 15 20 25 2 7 3
(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values v; and associated Eigenvalues \; = /2.

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 20 / 64



Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:

@ model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model Finite-N Limiting Bulk edge (far) Tail
w/ elements from Global shape Global shape Local stats Local stats
Universality class pPn(N) p(N), N = oo N A R Amax
Basic MP Gaussian . MP . MP T™W No tail.
distribution
Spiked- Gaussian, MP +
pk + low-rank Gaussian MP T™W Gaussian
Covariance X X
perturbations spikes
Heavy tail, (Weakly) MP + Lk Lk
4<p Heavy-Tailed PL tail MP Heavy-Tailed Heavy-Tailed
. Moderately) P PL
Heavy tail ( N PL
j Heavy-Tailed —(ap+b) (L. No edge. Frechet
2< <4 (or “fat tailed”) ~ A ~ A (gutt)
+F
Heavy tail, (Very) PL PL
0< <2 Heavy-Tailed oA Gern | =Gty No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “*" are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “**" are

phenomenological fits, describing large (2 < p < 4) or small (0 < u < 2) finite-size corrections on N — oo behavior.



Experiments: just apply this to pre-trained models

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-

vee19

1550

Year CNN Developed Place Top-5 error No. of
by rate parameters
1998 LeNet(8) ‘Yann LeCun 60 thousand
et al
2012 AlexNet(7) Alex 1st 15.3% 60 million
Krizhevsky,
Geoffrey
Hinton, llya
Sutskever
2013 ZFNet() Matthew 1st 14.8%
Zeiler and
Rob Fergus
2014 GoogleNet(1 | Google 1st 6.67% 4 million
9)
2014 VGG Net(16) | Simonyan, 2nd 7.3% 138 million
Zisserman
2015 ResNet(152) | Kaiming He | 1st 3.6%
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs

September 2018

31/ 64


https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more- ... 

RMT: LeNet5 (an old/small

[

LeNet5: pemp(A) and MP fit

0.5 —— MP fit
Pemp(A)
0.4
E 0.3
g
o2
0.1
0.0
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Eigenvalues of X =W™W

" conv2  pool2 hiddens

example)

output

LeNet5: ... zoomed in

— MPfit

Pemp(A)

1

2

3

4 5

Eigenvalues of X =W™W

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Marchenko-Pastur Bulk + Spikes

Mahoney (UC Berkeley)

Implicit Self-regularization in DNNs
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RMT: AlexNet (a typlcal modern DNN example)

30 AlexNet FC1: ... zoomed in* 10 AlexNet FC3: .. zoomed in
—— MPfit —— MPfit
2.5 Pemp(A) 0.8 Pemp(A)
2.0
= = 0.6
E 15 3
a4 S04
1.0
05 02
0.0 0.0
0 2 4 0 2 4
Eigenvalues (A) of X = W, Wrc1 Eigenvalues (A) of X = W[ Wrcs

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Marchenko-Pastur Bulk-decay + Heavy-tailed

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 34 / 64



RMT: InceptionV3 (a particularly unusual example)

1 1 1
sajeafagiigiiagii
| 00 S T

Convolution
Pooling

Other

InceptionV3 Wiz6: Pemp(A) and MP fi

InceptionV3 Wsgz2: Pemp(A) and MP fi

10 — MP fit — MPfit
0.8
o8 Pemp(A) Perpl)
0.6
06 z
£ H
< 04 < 04
0.2 0.2
0.0 0.0
0 10 20 0 10 20 30

Eigenvalues of X = W, Wy,¢

Eigenvalues of X = W7, W,

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Marchenko-Pastur bulk decay, onset of Heavy Tails

Mahoney (UC Berkeley)
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Random-like ESD p(A)

— MPfit
=08 Pemp(A)
s
206
2
&
Soa4
€
g
202
&
0.0 |

1.0 15 20 25
Eigenvalues A of X =W'W

(a) RANDOM-LIKE.

Bulk Collapse ESD p(A)
—— MPfit
Pemp(A)

°
>

Spectral Density ous(A)
° °
o =

°
o

2 a 6
Eigenvalues A of X = W'W

(d) BULK-DECAY.

RMT-based 5+1 Phases of Training

Bleeding out ESD p(A)
— MPfit
Pemp(A)

< o o
i > ©

Spectral Density pua(A)
o o
o

A
10 15 20 25
Eigenvalues A of X = W'W

o
o

(b) BLEEDING-OUT.

Heavy Tailed ESD p(})

0.4 Pemp(A)
=
&
So03
§
3802
E
g
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&
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(e) HEAVY-TAILED.

Bulk+Spikes ESD p(A)
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~ 08
= Pemp(A)
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Q04
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° \
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(c) BULK+SPIKES.

Singular ESD p(A)
Pemn(A)

Spectral Density
3 8 8 8

"
5

0

00 05 10 15
Eigenvalues A of X =W

(f) RANK-COLLAPSE.

Figure: The 5+1 phases of learning we identified in DNN training.
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RMT-based 5+1 Phases of Training

We model “noise” and also “signal” with random matrices:

W ~ Wrand + Asig.

(1)

Operational
Definition

Informal
Description
via Eqn. (1)

RANDOM-LIKE

ESD well-fit by MP
with appropriate At

wrand random;

|| A8 || zero or small

BLEEDING-OUT

ESD RANDOM-LIKE,
excluding eigenmass
just above AT

W has eigenmass at
bulk edge as
spikes “pull out”;
||A%8 ]| medium

BULK+SPIKES

ESD RANDOM-LIKE
plus > 1 spikes
well above A

W \ell_separated
from low-rank A®%;
|| ASE | larger

BULK-DECAY

ESD less RANDOM-LIKE;
Heavy-Tailed eigenmass
above AT; some spikes

Complex A8 with
correlations that
don't fully enter spike

HEAVY-TAILED

ESD better-described
by Heavy-Tailed RMT
than Gaussian RMT

wrand g small;
A8 s large and
strongly-correlated

RANK-COLLAPSE

ESD has large-mass
spike at A =0

W very rank-deficient;
over-regularization

Edge/tail Illustration
Fluctuation and
Comments Description
Amax = AT is
sharp, with Fig. 10(a)
TW statistics
BPP transition,
Amax and Fig. 10(b)
AT separate
AT is TW,
Amax IS Fig. 10(c)
Gaussian
+
Edge above A Fig. 10(d)
is not concave
No good A™; .
! Fig. 10(e
Amax > A* g 10(e)
— Fig. 10(F)

The 5+1 phases of learning we identified in

DNN training.



Bulk+Spikes: Small Models

Low-rank perturbation Perturbative correction
1 AP N
~ \N\Jrand large A - 52 = 14+ ——
WI—W/ ‘I‘A max g <Q+ N +‘A|2
_1
Al > (@)
LeNet5: pemp(A) and MP fit
0.5 — MPfit
PemplA)
0.4
Eé 0.3
< 0.2 .
Bulk — Spikes
0.1
vd
0.0
o] 10 20

Eigenvalues of X =W"W

Smaller, older models can be described perturbatively with Gaussian RMT

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 41 / 64



Bulk+Spikes: Small Models ~ Tikhonov regularization

LeNet5: pemp(A) and MP fit

ot | simple scale threshold
~ -1 .
x = (x n al) WTy
eigenvalues > a (Spikes)
_ carry most of the
o] ' 10 20 . . .
Eigenvalues of X = WTW signal /information

At

Smaller, older models like LeNet5 exhibit traditional regularization

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 42 / 64



Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

@ Can model strongly-correlated systems by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc)

ESD p(A) for AlexNet, FC2, zoomed in

AlexNet
ReseNet50
Inception V3
fo DenseNet201

1 H R
Eigenvalues (1) of X = Wi Wiy

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 43 / 64



Heavy-tailed Self-regularization

Summary of what we “suspect” today
@ No single scale threshold.
No simple low rank approximation for W,.

Contributions from correlations at all scales.

Can not be treated perturbatively.

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 44 / 64



Implications: RMT and Deep Learning

Energy

Entropy

@ Where are the local minima?
@ How is the Hessian behaved?
@ Are simpler models misleading?

@ Can we design better learning
strategies?

(tradeoff between Energy and Entropy minimization)

Native structure

How can RMT be used to understand the Energy Landscape?

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 58 / 64



Implications: Minimizing Frustration and Energy Funnels

As simple as can be?, Wolynes, 1997

TR RS

Energy

Configurational Coordinates

Configurational Coordinates

Configurational Coordinates

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding

=] =
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Implications: Energy Landscapes of Heavy-tailed Models?

Compare with (Gaussian) Spin Glass
model of Choromanska et al. 2015

Spin Glasses with Heavy Tails?
1. . @ Local minima do not concentrate
" near the ground state

Jw\b (Cizeau and Bouchaud 1993)

Energy

If Energy Landscape is more funneled, then no “problems” with local minima!
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Conclusions

Practice:
» Some problems are “global”:
» total click-through rate; total number of stars; human
population genetics
» Some problems are “local”:
» meaningful communities; quasars that identify new physics;
personalized medicine

Theory:

> Most objectives are global:
> global partition, global eigenvetor, global minimum

» Some objectives are local:
» find good cluster near a seed set

» Most algorithms are local:
> take one step of gradient descent
» but theory then makes a statement about global objective
» but practice then deviates from theory and applies it locally

Question: How to go forward?
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