
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

From local to global in clustering and dimension reduction

Hanyu Zhang

University of Washington
hanyuz6@uw.edu

with the Geometric Data Analysis Group
Marina Meila, Dominique Perrault-Joncas, James McQueen, Yu-chia Chen, Samson Koelle

From Local to Global Information Research Workshop 2/6/2020
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A motivating example: embedding of MD simulation data of aspirin

transi'on	  	  

▶ local to global in clustering and dimension reduction.

▶ Clustering: local similarity to find groups.

▶ Manifold Learning: local neighborhood to find global embedding.
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Unsupervised learning for scientific data

▶ Understanding structure of data is typical for science.

▶ Unsupervised learning aims to find structure in data: clusters, low
dimensionality, sparsity, causality, etc.

▶ Find knowledge that is non-specific to task or current query.

▶ Think as a scientist, answers cannot be crowdsourced:
▶ In the least, should be free of artifacts
▶ Ideally, should have guarantees without untestable model assumptions

▶ THIS TALK

▶ Data driven methods to make unsupervised learning more reproducible,
trustworthy and free of artifacts

▶ want stability and interpretability
▶ through geometry
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Unsupervised learning for scientific data

▶ Understanding structure of data is typical for science.

▶ Unsupervised learning aims to find structure in data: clusters, low
dimensionality, sparsity, causality, etc.

▶ Find knowledge that is non-specific to task or current query.

▶ Think as a scientist, answers cannot be crowdsourced:
▶ In the least, should be free of artifacts
▶ Ideally, should have guarantees without untestable model assumptions

▶ THIS TALK

▶ Data driven methods to make unsupervised learning more reproducible,
trustworthy and free of artifacts

▶ want stability and interpretability
▶ through geometry
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Geometry Data Analysis (GDA) for unsupervised learning

▶ Unsupervised learning aims to find structure in data: clusters, low
dimensionality, sparsity, causality, etc

▶ Convex analysis for clustering.
▶ Local optimum to guarantee global optimality

▶ Differential geometry for Manifold Learning (ML)
▶ Local metric to preserve geometry
▶ Local tangent space to find global coordinates with physical meaning

▶ (Not dicussed) topological data analysis
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Stability guarantees for clustering [M NeurIPS 2018]

provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]

“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang

arXiv:1811.11891,. . . ]

interpretability in the language of the problem
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Outline

Stability guarantees for clustering [M NeurIPS 2018]

provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]

“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang

arXiv:1811.11891,. . . ]

interpretability in the language of the problem
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For the practitioner of clustering

▶ Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

▶ IDEALLY WANTED: guarantee that C is correct/optimal

▶ WHAT WE CAN DO: guarantee that C is approximately correct/optimal

▶ WHEN C is good and stable

Good, stable Bad Unstable

SS output: OI=1e−4 no guarantee no guarantee
OI = Optimality Interval
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SS output: OI=1e−4 no guarantee no guarantee
OI = Optimality Interval
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For the practitioner of clustering

▶ Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

▶ IDEALLY WANTED: guarantee that C is correct/optimal

▶ WHAT WE CAN DO: guarantee that C is approximately correct/optimal

▶ WHEN C is good and stable

Good, stable Bad Unstable

SS output: OI=1e−4 no guarantee no guarantee
OI = Optimality Interval
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Convex relaxations

Clustering problem Given data, K , loss function Loss(C)

L∗ = min
C∈Ck

Loss(C), with solution C∗Hard! (1)

Convex relaxation of problem (1).

▶ clustering C → matrix X (C) ∈ X
where X is convex set

and Loss(X ) convex in X

▶ solve
L∗ = min

X∈X
Loss(X ), with solution X ∗ (2)
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Mapping a clustering to a matrix

n = 5, C = (1, 1, 1, 2, 2), X (C) =


1
3

1
3

1
3

0 0
1
3

1
3

1
3

0 0
1
3

1
3

1
3

0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2


1. X (C) is symmetric, positive definite, ≥ 0 elements

2. X (C) has row sums equal to 1

3. traceX (C) = K

Let X be the space n × n of matrices with Properties 1, 2, 3 above

▶ X (C) are extreme points of X
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The Sublevel Set (SS) method

▶
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The Sublevel Set (SS) method

▶
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The Sublevel Set (SS) method

▶
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The Sublevel Set (SS) method

▶
a convex optimization problem
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The Sublevel Set (SS) method

▶
δ is OI
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The Sublevel Set (SS) method

δ is OI

Step 0 Cluster data, obtain a clustering C.
Step 1 Define convex optimization problem

(SS) δ = maxX ′∈X ∥X (C)− X ′∥F , s.t. Loss(X ′) ≤
Loss(C).

Step 2 Prove that ∥X (C)− X (C)′∥F ≤ δ ⇒ dEM(C, C′) ≤ ϵ
E.g. by [M, MLJ 2012]

Done: ϵ is a Optimality Interval (OI) for C.
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Two technical bits

1. SS is convex only if ||X ′ − X (C)|| concave
▶ Use || ||F Frobenius norm. ||X (C)||2F = K for any clustering.

2. Relating ∥ ∥F to distance between clusterings.

∥X (C)− X (C)′∥2F ≤ δ ⇒ dEM(C, C′) ≤ ϵ
distance between matrices “misclassification error” metric

between clusterings

▶ Theorem proved in [M, Machine Learning Journal, 2012] with ϵ = 2δpmax.
▶ The tightest result known. Upper/lower bounds between dEM , ∥ ∥F and

Rand

▶ Proofs use geometry of convex sets + refined analysis for small distances
▶ Example from [Wan,M NIPS16] OI by existing results [] OI by our method
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1. SS is convex only if ||X ′ − X (C)|| concave
▶ Use || ||F Frobenius norm. ||X (C)||2F = K for any clustering.

2. Relating ∥ ∥F to distance between clusterings.

∥X (C)− X (C)′∥2F ≤ δ ⇒ dEM(C, C′) ≤ ϵ
distance between matrices “misclassification error” metric

between clusterings

▶ Theorem proved in [M, Machine Learning Journal, 2012] with ϵ = 2δpmax.
▶ The tightest result known. Upper/lower bounds between dEM , ∥ ∥F and
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K-means Sublevel Set problem

Loss(C) = ⟨D,X (C)⟩, D = squared distance matrix ∈ Rn×n

SSKm δ = min
X ′∈X

⟨X (C),X ′⟩ s.t.⟨D,X ′⟩ ≤ Loss(C)

a Semi-Definite Program (SDP).

Algorithm

Input Matrix of squared distances D, clustering C
1. Solve SSKm, get optimal value δ.

2. If ϵ = (K − δ)pmax ≤ pmin then C is stable

else no guarantee.
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Results for K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||µk − µl || = 4
√
2 ≈ 5.67

data for σ = 0.9 Values of ϵ vs cluster spread σ

Spectral=[M ICML06], SDP=[M NeurIPS 2018]

Aspirin (C9O4H8) molecular simulation data [Chmiela et al. 2017]

K = 2
pmin=.26

pmax=.74

n = 2118 ϵ = 0.065



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Separation statistics

distance to own center over min center
separation, colored by σ.

distance to second closest center over
distance to own center, versus σ
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For what clustering paradigms can we obtain OI’s?

“All” ways to map C to a matrix
space matrix definition size
X X (C) Xij = 1/nk iff i , j ∈ Ck n × n, block-diagonal

X̃ X̃ (C) X̃ij = 1 iff i , j ∈ Ck n × n, block-diagonal
Z Z(C) Zik = 1/

√
nk iff i ∈ Ck n × K , orthogonal

Theorem
[M NeurIPS 2018] If Loss has a convex relaxation involving one of X , X̃ ,Z , then

(1) There exists a convex SS problem

SS δ = min
X ′∈X≤c

⟨X (C),X ′⟩ (similarly for X̃ ,Z).

(2) From optimal δ an OI ϵ can be obtained, valid when ϵ ≤ pmin.

X : Xij = 1/nk iff i , j ∈ Ck ϵ = (K − δ)pmax

X̃ : X̃ij = 1 iff i , j ∈ Ck ϵ =
∑

k∈[K ] n
2
k+(n−K+1)2+(K−1)−2δ

2pmin

Z : Zik = 1/
√
nk iff i ∈ Ck ϵ = (K − δ2/2)pmax

Existence of guarantee depends only on space of convex relaxation.
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Results for Spectral Clustering by Normalized Cut

Spectral=[M AISTATS05], SDP=[M NeurIPS 2018]

Synthetic S , n = 100 Chemical reaction data, n ≈ 1000
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Stability and the selection of K [Cheng,M,Harchaoui (in preparation)]

2 3 4 5 6 7 8 9 10
number of clusters k

0.0

0.2

0.4

0.6

0.8

1.0

sd
p 

bo
un

d

sdp bound for n = 200 normal: 0 cluster_equal_size: 0 full: 1 k_true: 8
sigma: 0.6[8]
sigma: 0.8[8]
sigma: 1.0[8]

Summary of SS method

1. Cluster data

2. Set up and solve SS problem

3. If solution ϵ small enough, guarantee C is approximately optimal

and all other good clusterings are near it

▶ without any model assumptions, practically applicable

▶ not all C can have guarantees
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Outline

Stability guarantees for clustering [M NeurIPS 2018]

provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]

“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang

arXiv:1811.11891,. . . ]

interpretability in the language of the problem
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Brief intro to manifold learning algorithms

ALL ML Algorithms

▶ Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ϵ

p1, . . . pn ⊂ RD
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Brief intro to manifold learning algorithms

ALL ML Algorithms

▶ Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ϵ

▶ Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ϵ

p1, . . . pn ⊂ RD
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Brief intro to manifold learning algorithms

ALL ML Algorithms

▶ Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ϵ

▶ Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ϵ

▶ Construct a n × n sparse distance matrix

D = [||p − p′||]p,p′neighbors

p1, . . . pn ⊂ RD
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Brief intro to manifold learning algorithms

ALL ML Algorithms

▶ Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ϵ

▶ Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ϵ

▶ Construct a n × n sparse distance matrix

D = [||p − p′||]p,p′neighbors

▶ Optional: construct kernel matrix, .e.g

S = [Spp′ ]p,p′∈D with Spp′ = e−
1
ϵ
||p−p′||2 iff p, p′ neighbors

and Laplacian matrix

p1, . . . pn ⊂ RD
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Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps
(LE)

Local Linear Embedding
(LLE)

Isomap

Local Tangent Space
Alignment (LTSA)
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Preserving topology vs. preserving (intrinsic) geometry

▶ Algorithm maps data p ∈ RD −→ ϕ(p) = x ∈ Rm

▶ Mapping M −→ ϕ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

▶ Mapping ϕ preserves
▶ distances along curves in M
▶ angles between curves in M
▶ areas, volumes

. . . i.e. ϕ is isometry
For most algorithms, in most cases, ϕ is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

▶ mapping ϕ that preserves topology

true in many cases

Objective

▶ augment ϕ with geometric information g
so that (ϕ, g) preserves the geometry

g is the Riemannian metric.
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g for Sculpture Faces

▶ n = 698 gray images of faces in D = 64× 64 dimensions
▶ head moves up/down and right/left

LTSA Algoritm
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Isomap LTSA

Laplacian Eigenmaps
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Relation between g and ∆

▶ ∆ = Laplace-Beltrami operator on M
▶ ∆ = div · grad
▶ on C2, ∆f =

∑
j
∂2f
∂x2j

▶ on weighted graph with similarity matrix S , and tp =
∑

pp′ Spp′ ,

∆ = diag{ tp} − S

Proposition 1 (Differential geometric fact)

∆f =
√

det(G)
∑
l

∂

∂x l

(
1√

det(G)

∑
k

(G−1)lk
∂

∂xk
f

)
,
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Estimation of g

Proposition

Let ∆ be the Laplace-Beltrami operator on M. Then

hkl(p) =
1

2
∆(ϕk − ϕk(p)) (ϕl − ϕl(p))|ϕk (p),ϕl (p)

where h = g−1 (matrix inverse) and k, l = 1, 2, . . .m are embedding
dimensions

Intuition:

▶ at each point p ∈ M, G(p) is a d × d matrix

▶ apply ∆ to embedding coordinate functions ϕ1, . . . ϕm

▶ this produces G−1(p) in the given coordinates

▶ our algorithm implements matrix version of this operator result

▶ consistent estimation of ∆ is well studied [Coifman&Lafon 06,Hein&al 07]
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Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path d d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%
LE s = 2 0.08 0.08 1.62 3.1%

l(c) =

∫ b

a

√√√√∑
ij

Gij
dx i

dt

dx j

dt
dt,
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Riemannian Relaxation for Ethanol molecular configurations
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Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates

Why useful

▶ Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

▶ Algorithm independent geometry preserving method

▶ Outputs of different algorithms on the same data are comparable

Applications

▶ Estimating distortion
▶ Correcting distortion

▶ Integrating with the local volume/length units based on Gi
▶ Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]

▶ Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and
of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])

▶ Accelerating Topological Data Analysis (in progress), selecting
eigencoordinates [Chen, M NeurIPS19]
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along with embedding coordinates
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▶ Algorithm independent geometry preserving method
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Outline

Stability guarantees for clustering [M NeurIPS 2018]

provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]

“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang

arXiv:1811.11891,. . . ]

interpretability in the language of the problem
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Motivation

ethanol torsion 1 torsion 2

▶ 2 rotation angles parametrize this manifold

▶ Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?
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Problem formulation

▶ Given
▶ data ξi ∈ RD , i ∈ 1 . . . n
▶ embedding of data ϕ(ξ1:n) in Rm

▶ dictionary of domain-related smooth functions
F = {f1, . . . fp, with fj : RD → R}.

▶ e.g. all torsions in ethanol
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Problem formulation

▶ Given
▶ data ξi ∈ RD , i ∈ 1 . . . n
▶ embedding of data ϕ(ξ1:n) in Rm

▶ dictionary of domain-related smooth functions
F = {f1, . . . fp, with fj : RD → R}.

▶ e.g. all torsions in ethanol
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Problem formulation

▶ Given
▶ data ξi ∈ RD , i ∈ 1 . . . n
▶ embedding of data ϕ(ξ1:n) in Rm

▶ dictionary of domain-related smooth functions
F = {f1, . . . fp, with fj : RD → R}.

▶ e.g. all torsions in ethanol

▶ Goal to express the embedding coordinate functions ϕ1 . . . ϕm in terms of
functions in F .
More precisely, we assume that

ϕ(x) = h(fj1(x), . . . fjs (x)) with fj1,...js ⊂ F .

Problem: find S = {j1, . . . js}



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Challenges

ϕ(x) = h(fj1 (x), . . . fjs (x)) with fj1,...js ⊂ F .

▶ Framework: sparse regression

▶ Challenges

▶ h non-linear (but smooth)
▶ ϕ defined up to diffeomorphism

▶ hence, h cannot assume a parametric form
▶ will not assume one-to-one correspondence between ϕk coordinates and gj

in dictionary

ϕ1 = f1/
√
f2, ϕ1 = sin(τ1)

e.g. ϕ2 = f1 sin(f 23 ) or ϕ2 = cos(τ1)(ethanol)
ϕ3 = sin(τ2)

▶ we do not assume ϕ isometric

▶ what requirements on dictionary functions f1:p for unique recovery?
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Challenges

ϕ(x) = h(fj1 (x), . . . fjs (x)) with fj1,...js ⊂ F .

▶ Framework: sparse regression

▶ Challenges

▶ h non-linear (but smooth)
▶ ϕ defined up to diffeomorphism

▶ hence, h cannot assume a parametric form
▶ will not assume one-to-one correspondence between ϕk coordinates and gj

in dictionary

ϕ1 = f1/
√
f2, ϕ1 = sin(τ1)

e.g. ϕ2 = f1 sin(f 23 ) or ϕ2 = cos(τ1)(ethanol)
ϕ3 = sin(τ2)

▶ we do not assume ϕ isometric

▶ what requirements on dictionary functions f1:p for unique recovery?
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First Idea: from non-linear to linear

▶ If

ϕ = h ◦ f
▶ (sparse non-linear, non-parametric recovery)

▶ then

Dϕ = DhDf

▶ sparse linear recovery

▶ A sparse linear system for every data point i
▶ Require subset S is same for all i

▶ group Lasso problem

▶ Functional Lasso
▶ optimize

(FLasso) min
β

Jλ(β) = 1
2

n∑
i=1

||yi − X iβ i ||22 + λ/
√
n
∑
j

||βj ||,

▶ with y i = ∇ϕ(ξi ), X i = ∇f1:p(ξ), βij =
∂h
∂fj

(ξi )

▶ support S of β selects fj1,...js from F
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First Idea: from non-linear to linear

▶ If

ϕ = h ◦ f
▶ (sparse non-linear, non-parametric recovery)

▶ then

Dϕ = DhDf

▶ sparse linear recovery

▶ A sparse linear system for every data point i
▶ Require subset S is same for all i

▶ group Lasso problem

▶ Functional Lasso
▶ optimize

(FLasso) min
β

Jλ(β) = 1
2

n∑
i=1

||yi − X iβ i ||22 + λ/
√
n
∑
j

||βj ||,

▶ with y i = ∇ϕ(ξi ), X i = ∇f1:p(ξ), βij =
∂h
∂fj

(ξi )

▶ support S of β selects fj1,...js from F
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Theory

▶ When is S unique? / When can M be uniquely parametrized by F?
Functional independence conditions on dictionary F and subset fj1,...js

▶ Basic result

gS = h ◦ gS′ on U iff

rank

(
DgS
DgS′

)
= rankDgS′ on U

▶ When can FLasso recover S ?
Incoherence conditions

µ = max
i=1:n,j∈S,j′ ̸∈S

|XT
ji Xj′ i | ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
i,k

ϵ2ik

Theorem If µν
√
s + σ

√
nd

λ
< 1 then βj = 0 for j ̸∈ S .
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Theory

▶ When is S unique? / When can M be uniquely parametrized by F?
Functional independence conditions on dictionary F and subset fj1,...js

▶ Basic result

gS = h ◦ gS′ on U iff

rank

(
DgS
DgS′

)
= rankDgS′ on U

▶ When can FLasso recover S ?
Incoherence conditions

µ = max
i=1:n,j∈S,j′ ̸∈S

|XT
ji Xj′ i | ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
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ϵ2ik
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√
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Ethanol MD simulation
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Summary of ManifoldLasso/FunctionalLasso

▶ Regress non-linearly functions
ϕ1:m on F = {f1:p}

▶ explain learned coordinates by
dictionaries of domain-relevant
functions

▶ sparse functional regression

▶ rank of feature set, of neural net
embedding

▶ set of f’s that covary (e.g. protein
folding), level sets (in progress)

▶ Method to push/pull vectors
through mappings ϕ

M
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▶ rank of feature set, of neural net
embedding

▶ set of f’s that covary (e.g. protein
folding), level sets (in progress)

▶ Method to push/pull vectors
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ϕ1:m on F = {f1:p}

▶ explain learned coordinates by
dictionaries of domain-relevant
functions

▶ sparse functional regression

▶ rank of feature set, of neural net
embedding

▶ set of f’s that covary (e.g. protein
folding), level sets (in progress)

▶ Method to push/pull vectors
through mappings ϕ
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Summary: Towards knowledge that is transferable
Cluster validation without model assumptions [M NeurIPS 2018]

▶ A general method that can be applied to any clustering cost that has a
convex relaxation

Metric Manifold learning

▶ Before embedding: choice of kernel width ϵ [Perrault-Joncas,McQueen,M

17], choice of intrinsic dimension d

▶ Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurIPS19]

▶ After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]

Manifold coordinates with pysical meaning [arXiv:1811.11891]

▶ Interpretation in the language of the domain

▶ From non-parametric to parametric

Python package github.com/mmp2/megaman

▶ tractable for millions of points

▶ manifold learning and clustering

▶ incorporates state of the art results
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Summary: Towards knowledge that is transferable
Cluster validation without model assumptions [M NeurIPS 2018]

▶ A general method that can be applied to any clustering cost that has a
convex relaxation

Metric Manifold learning

▶ Before embedding: choice of kernel width ϵ [Perrault-Joncas,McQueen,M

17], choice of intrinsic dimension d

▶ Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurIPS19]

▶ After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]

Manifold coordinates with pysical meaning [arXiv:1811.11891]

▶ Interpretation in the language of the domain

▶ From non-parametric to parametric

Python package github.com/mmp2/megaman

▶ tractable for millions of points

▶ manifold learning and clustering

▶ incorporates state of the art results
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Towards unsupervised validation for unsupervised learning

▶ In Machine Learning: Unsupervised Learning is the next big challenge

▶ In the sciences: Unsupervised Learning is about explanation and
understanding

▶ Automated discoveries require automated validation

▶ With domain knowledge
▶ On purely mathematical/statistical grounds

▶ Remove algorithmic artifacts

▶ Quantitative measures of “correctness” / robustness / uncertainty

▶ Is explanation unique?

▶ Statistical guarantees – without untestable assumptions

▶ Good community practices – all machine learning algorithms should come
with validation procedures

▶ Interpretability – in the language of the domain
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Sam Koelle, Yu-Chia Chen, Alon Milchgrub
Dominique-Perrault Joncas (Google), James McQueen (Amazon)

Jacob VanderPlas (Google), Grace Telford (UW Astronomy)
Jim Pfaendtner (UW), Chris Fu (UW)

A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you


	Stability guarantees for clustering [M NeurIPS 2018]
	provable ``correctness'' for the practitioner

	Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]
	``coordinate independent'' geometric recovery

	Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891,…]
	interpretability in the language of the problem


