Leveraging Local Information in Practical Machine Learning: Minimum Description Length Regularization for Online Learning

Gil I. Shamir

Google

Presented, Feb 6, 2020 at:

FROM LOCAL TO GLOBAL INFORMATION. February 5-7, 2020 Honolulu, Hawaji

Problem and Approach:

- Online learning
- Online feature selection *locally per feature*
- Minimum Description Length (MDL) principle applied

Main Results:

- Improved sparsity accuracy tradeoffs
- Mitigation of overfitting

- The Problem
- Stochastic Gradient Descent
- Sparsity and regularization
- Standard sparsity regularization methods
- Minimum Description Length (MDL)
- MDL for online regularization
- Empirical results
- Analysis

- A model \mathcal{M} has:
 - Large set of features
 - Model features have (unknown) weights **x**

- A model \mathcal{M} has:
 - Large set of features
 - Model features have (unknown) weights **x**
- Learn the weights **x** from training examples (**a**, y)
 - **a** sparse vector of feature values
 - y label of example

- A model \mathcal{M} has:
 - Large set of features
 - Model features have (unknown) weights **x**
- Learn the weights **x** from training examples (**a**, y)
 - **a** sparse vector of feature values
 - y label of example
- Goal Minimize some loss
 - Over all training examples
 - For unseen examples

- A model \mathcal{M} has:
 - Very large set of features
 - Model features have (unknown) weights x
- Learn the weights **x** from training examples (**a**, y)
 - **a** sparse vector of feature values
 - y label of example
- Goal Minimize some loss
 - Over all training examples
 - For unseen examples

- A model \mathcal{M} has:
 - **Very very** large set of features (Google scale)
 - Model features have (unknown) weights **x**
- Learn the weights **x** from training examples (**a**, y)
 - **a** sparse vector of feature values
 - y label of example
- Goal Minimize some loss
 - Over all training examples
 - For unseen examples

Online Learning Problem Setting

- At round t:
 - \circ We have
 - Estimate of **x**_t
 - \circ We know
 - Features values \mathbf{a}_t
 - \circ We try to estimate
 - Label y_t

Estimates based on past t-1 rounds.

Examples of Practical Problems

- Click-Through-Rate (CTR) prediction for ads
 - Feature examples:
 - Words in query
 - Words in ads
 - Label: clicked/not-clicked
 - Prediction: probability of a click
- Classification of products to categories
 - Label: which category
 - Prediction: probability of each category

Example: Logistic Regression with Log Loss

- Feature vectors:
 - Values at round: $\mathbf{a}_t \in \{0, 1\}$ or other range.
 - Prediction weights (log-odds): \mathbf{x}_t
 - Label $y_t \in \{0, 1\}$
- Predicted positive (1) label probability:

$$p_t = \sigma(\mathbf{a}_t \cdot \mathbf{x}_t) \qquad \quad \sigma(z) \stackrel{ riangle}{=} rac{1}{(1+e^{-z})}$$

• Loss:

$$f_t(\mathbf{x}) = -y_t \log p_t - (1-y_t) \log(1-p_t)$$

Formal Online Convex Optimization Setting

Online Convex Optimization:

- Series of rounds $t \in \{1, 2, ..., T\}$
- Play $\mathbf{x}_t \in \mathbb{R}^k$ at round t
- Incur loss $f_t(\mathbf{x}_t)$ at t
- Try to minimize overall loss

Regret: relative to fixed comparator **x**^{*}

$$\mathsf{Regret}(\mathbf{x}^*) \stackrel{ riangle}{=} \sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}^*)$$

General Soluation - SGD

Stochastic Gradient Descent (SGD)

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{g}_t$$

- Loss gradient: $\mathbf{g}_t = \bigtriangledown f_t(\mathbf{x}_t)$
- Step size: η_t
 - \circ Per round
 - Per coordinate [Duchi et. al., Streeter/McMahan, 2010-11]

The problems:

- Some features are useless for prediction
 - Inject noise (increasing regret)
 - Increase model size
- We can't deploy models so big

Regularization - Standard Approach

What is regularization?

• Introduce additional loss component

- Constrains weights
- Adds mathematical convenience
- Can be viewed as *prior* on weights

L1 Regularization - Batch Approach

L1 Regularization

• Additional L1 Norm based loss

$$\hat{\mathbf{x}} = rg\min_{\mathbf{x}} \left\{ \sum_{t=1}^{T} f_t(\mathbf{x}) + \lambda_1 \left\|\mathbf{x}
ight\|_1
ight\}$$

- Forces weights to 0.
- Mathematically convenient
- Laplace prior

L1 - Online Shrinkage

Continuously shrink weights toward 0 when updated

[Beck & Teboulle, 09]

- Motivated from batch derivation
- Shrinks noisy features
 - But also good ones
- Very sensitive to shrinkage parameter
- \circ $\,$ No direct derivation for online

Follow The Regularized Leader (FTRL)

- A general approach
- SGD special case

Can be used to formulate online L1 regularization

• Mathematically provable

Follow The Regularized Leader (FTRL)

• With strongly convex **regularizer** $r_t(x)$ play

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}} \{f_{1:t}(\mathbf{x}) + r_{0:t}(\mathbf{x})\}$$

$$f_{1:t} = \sum_t f_t \quad r_{0:t} = \sum_t r_t$$

- Linearization: replace loss by: $\overline{f}_t(\mathbf{x}) = \mathbf{g}_t \cdot \mathbf{x}_t$ \circ [Zinkevich, 03]
- Linearized version becomes SGD with
 - [McMahan, 11]

$$r_t(\mathbf{x}) = rac{arphi_t}{2} \|\mathbf{x} - \mathbf{x}_t\|_2^2, \ \eta_t \stackrel{ riangle}{=} rac{1}{arphi_{1:t}}$$

- Add L1 term to FTRL
 - [McMahan, 11]

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}} \left\{ \mathbf{g}_{1:t} \cdot \mathbf{x} + \mathbf{r}_{0:t}(\mathbf{x}) + \lambda_1 \left\| \mathbf{x} \right\|_1 \right\}$$

Still suboptimal Regularization!

Performance

- Suboptimal accuracy sparsity tradeoffs
- Underfitting or overfitting

Why?

- Maximum likelihood (ML) ignores cost of parameters
- L1 methods select (Laplace) prior on weights
 - Does not rely directly on objective
 - Shrinkage does not let good weights converge
 - Fixed threshold lets noise in

What is underfitting?

- Poor predictions
 - Model does not capture all data
 - Missing features

Y

What is overfitting?

- Poor predictions
 - Model captures noise with data
 - "Too many features"
 - Including useless / harmful ones.
- Predict well on training data
 - Poorly on unseen data

Î	h
	Overfitting

[From AWS ML]

Standard Methods - [Rissanen, 89]

"We never want to make the **false** assumption that the observed data actually were generated by a distribution of some kind, say Gaussian, and then go on to analyze the consequences and make further deductions. Our deductions may be **entertaining** but quite **irrelevant** to the task at hand, namely, to learn useful properties from the data."

Minimum Description Length (MDL)

The Principle:

• To describe data \mathbf{y}_1^T choose the model \mathcal{M} that minimizes

$$\mathcal{L}(\mathbf{y}_{1}^{T}) = \underbrace{\mathcal{L}(\mathcal{M})}_{\text{Model Cost}} + \underbrace{\mathcal{L}(\mathbf{y}_{1}^{T}|\mathcal{M})}_{\text{Data Description Cost}}$$

[Rissanen'78, 84, 86]

MDL - Feature (Local) Level

• Each Feature

- Value/benefit potential improvement to loss
- Cost learning of weight reflected in loss
- We must:
 - Not ignore cost
 - Treat the sum of value and cost as **overall benefit** of feature

⇒ Model only includes features with overall positive benefit!

Advantages of MDL

Address problems with Standard L1 Methods

Overfitting Interpretation:

Features cost more to learn than benefit they bring

 \Rightarrow No predictive value to unseen data

Underfitting:

- Include all features
 - With overall positive benefit

MDL Motivation - [Grunwald, 04]

"MDL procedures automatically and inherently protect against overfitting and can be used to estimate both the parameters and the structure (e.g., number of parameters) of a model. In contrast, to avoid overfitting when estimating the structure of a model, traditional methods such as maximum likelihood must be modified and extended with additional, typically ad hoc principles."

So Where is MDL Used - Examples

- Universal data compression
 - Context Tree Weighting (CTW) [Willems, Shtarkov, Tjalkens 95]

- Offline model selection and denoising
 - For regression [Hansen, Yu 01]
 - Denoising [Rissanen, 00; Roos, Rissanen, 09]
 - Many more examples

MDL Offline Feature Selection

[Hansen, Yu 01]

- Select features prior to training by
 - Gain on loss
 - Lower bound trainings cost (0.5 log n per parameter)
- Mix multiple models
 - Mixture is function of lower bounds on loss
- Drawbacks
 - \circ Infeasible
 - Suboptimal

Why MDL Wasn't Used

- Advantages Understood
 - [Rissanen, Grunwald]
 - [Zhao, Yu 06]
 - "L1 methods may not select model correctly"
 - "MDL methods are always consistent"
- How to do it was not:
 - "Approach not feasible in practice" [Grunwald 04]
 - "MDL computationally intractable" [Zhao, Yu 06]

So how do we do it online?

For each feature:

- Train model with it
- Train model without it
- Loss improvement with feature **benefit score**

Only use features with positive score for prediction

MDL Regularization - Model Level

- Update/train all features
 - good benefit
 - But also bad
- Features can move between categories
- Predict only with features with sufficient benefit
- Can wrap over any algorithm
- No additional complexity
- Ranks features by importance
- Tweaks to weight learned weight as function of benefit

Why does it work?

Difference in loss with any wrapped algorithm

- Already captures MDL benefit
- Loss already includes
 - Gain of adding feature
 - Cost of learning feature
 - with the wrapped algorithm

No need to work hard - already have all we need

Trading Sparsity / Accuracy

Better tradeoffs than L1

- Benefit based feature selection:
 - \circ Benefit threshold $oldsymbol{\mu}$
 - Benefit < $\mu \Rightarrow$ 0 weight
- No overfitting when $\mu \ge 0$

Threshold	Model	Accuracy
Low	large	+
High	small	-

Experiments

- Click-Through-Rate (CTR) prediction
 - Huge set of features
 - Many many examples
- Several Algorithms
 - L1 FTRL (only)
 - MDL wrapped on L1 FTRL,
 - MDL on FTRL (no L1)
- Progressive validation AUC (Area under curve) loss
- Percent size and loss increase (decrease if negative)

Experimental Results

- Better tradeoffs than L1
 - huge size reductions (~50%)
 - Better accuracy

• No overfitting

- (overfitting is present with L1)
- MDL with L1 only size reduction

Present MDL regularization as Bayesian Mixture

- 1. All possible feature subspaces
- 2. Negligible loss doing it per feature
- 3. Bounded loss sparsifying

Complete MDL Mixture Heuristic Approach

For Logistic Regression:

- Predictor for every feature subspace **s** total 2^k
- Mix with prior for feature usefulness α

$$\mathbf{w}^{(\mathbf{s})} = lpha^{\|\mathbf{s}\|_0} (1-lpha)^{k-\|\mathbf{s}\|_0}$$

• Label sequence probability per (subspace) state: $\prod p_{s,t}^{y_t} \cdot (1 - p_{s,t})^{1-y_t}$

Not really feasible for a huge number of features

Per Feature (Local) Mixture

General Idea

- Bayesian mixture per feature with a 0 weight.
- Mixture weighted using **benefit score**:
- Features train:
 - with regular **base** algorithm (SGD, FTRL, etc.)
 - Seeing other mixed features

Linearized MDL Mixture Algorithm

Notation:

- $\bar{\mathbf{x}}_t$ vector played by base algorithm
- $\tilde{\mathbf{x}}_t$ feature level mixed vector
- **B**_t benefit score vector
- $\bar{\mathbf{g}}_t$ base gradient (other features mixed)
- $\mathbf{x}_{-i,t} \mathbf{x}_t$ with component *i* set to 0
- $\mathbf{x}_{+i,t}$ \mathbf{x}_t with component *i* set to $\bar{x}_{i,t}$

Linearized MDL Mixture Updates

Gradient update:

$$\bar{\mathbf{g}}_{t}^{(i)} \in \partial f_{t}\left(\tilde{\mathbf{x}}_{+i,t}\right), \forall i$$

Benefit update:

$$B_{i,t+1} \leftarrow B_{i,t} - \left[f_t\left(\tilde{\mathbf{x}}_{+i,t}\right) - f_t\left(\tilde{\mathbf{x}}_{-i,t}\right)\right], \forall i$$

Base update:

$$\bar{\mathbf{x}}_{t+1} \leftarrow \arg\min_{\bar{\mathbf{x}}} \left[\bar{\mathbf{g}}_{1:t} \cdot \bar{\mathbf{x}} + r_{0:t} \left(\bar{\mathbf{x}} \right) \right]$$

Mixture update:

$$\tilde{x}_{i,t+1} \leftarrow \sigma \left(B_{i,t+1} + \rho(\alpha) \right) \cdot \bar{x}_{i,t+1},$$

- $\rho(\alpha)$ function of prior
- $\sigma(\cdot)$ Sigmoid

How Does it Work?

- Benefit score
 - Large for useful features
 - Small for useless features
- Mixture weight
 - Approaches 1 quickly for good features
 - Approaches **0** quickly for **bad** features
- Base learning algorithm already does MDL
 - Benefit increases with "entropy" gain
 - Base algorithm cost incurred as algorithm learns
- 0 mass suppresses bad features **avoiding their MDL loss**

Linearized MDL Mixture Performance

Theorem:

- Under mild regularity conditions on the loss,
- The loss of the complete MDL mixture is achieved
 o (with additional terms negligible relative to the regret).

Explanation:

- Bound on Loss of best feature subspace achieved
 - (sum of "entropy" and regret terms)
- No complexity penalty

Balancing Accuracy and Sparsity

Problem: Mixture still uses all features

- Saves on accuracy
- Does not impose sparsity

Solution (already shown): Threshold benefit score per feature

- Below threshold use as 0 for prediction
- Above threshold use mixture weight

MDL Regularization

MDL Regularization Performance

Corollary:

MDL Regularization achieves the MDL mixture loss with an additional O(μ m) term

- m useful features in best feature subspace
- μ benefit threshold selected

Summary and Conclusions

- Novel MDL based regularization
 - based on actual objective
- Better accuracy sparsity tradeoffs
- Overfitting mitigated
- MDL mixture analysis leads to theoretical guarantees

Information Theory ideas \Rightarrow Improved practical systems

Local optimization \Rightarrow Global solution.

