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Entropy and information

Assume that X ,Y have joint distribution fX ,Y (x , y) on IRdx×dy .

Classical definitions of entropy and mutual information Shannon (1948)

• Marginal (Shannon) entropy:

H(X ) = −
∫

fX (x)logfX (x)dx

• Joint entropy:

H(X ,Y ) = −
∫

fX ,Y (x , y)logfX ,Y (x , y)dxdy

• Conditional entropy:

H(X |Y ) = −
∫

fX ,Y (x , y)logfX |Y (x |y)dxdy = H(X ,Y )− H(Y )

• Mutual information:

I (X ,Y ) =

∫
fX ,Y (x , y)log

fX |Y (x |y)

fX (x)
dxdy = H(X )− H(X |Y )

⇔ the large-n limit of a certain graph over i.i.d. {(Xi ,Yi )}ni=1 from fX ,Y .

5
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Rényi and Havrda-Charvat-Tsallis (HCT) entropies of order α

• Rényi-α entropy (Rényi (1961)) for α > 0:

Hα(f ) =
1

1− α log

∫
IRd

f α(x)dx

• Rényi-α information divergence from f to g for α ∈ [0, 1]:

Dα(f ‖g) =
1

α− 1
log

∫
IRd

f α(x)g 1−α(x)dx ,

Property: as α→ 1

Hα(f )→ −
∫

f (x)logf (x)dx (Shannon entropy)

Dα(f ‖g)→
∫

f (x)log
f (x)

g(x)
dx (KL divergence)

• HCT-α entropy (Havrda and Charvat (1967),Tsallis (1988))

H̃α(f ) =
1

1− α

(∫
IRd

f α(x)dx − 1

)

6
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k-nearest neighbor (kNN) graph

• n Euclidean points {Xi}ni=1, Xi ∈ IRd

• γ ∈ (0, d) a parameter

• kNN graph G = {V ,E}

LkNN
γ (V ) = min

E :A1≥k1
Lγ(V ,E)

= min
E :A1≥k1

∑
eij∈E

|eij |γ

=
n∑

i=1

∑
j∈Nk (Xi )

‖Xi − Xj‖γ

• Nk(Xi ) are the k-nearest neighbors of
Xi in Xn − {Xi}

• Computational complexity is
O(knlogn)

7
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Minimal spanning tree (MST)

• MST is solution of the optimization

LMST
γ (V ) = min

E :A1>0
Lγ(V ,E)

= min
E :A1>0

∑
eij∈E

|eij |γ

• MST spans all of the vertices V
without cycles

• MST has exactly n − 1 edges

• Computational complexity is O(n2logn)

8
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Friedman-Rafsky graph (FR)

• Two labeled sample sets Xn, Ym

• Start with MST over V = Xn ∪ Ym

LMST
γ (V ) = min

E :A1>0
Lγ(V ,E)

=
∑

eij∈E∗

|eXXij |γ + |eXYij |γ + |eYYij |γ

• FR graph is the set of edges {eXYij }
• The length of FR graph is

LFR
γ (V ) =

∑
eXYij ∈E

MST

|eXYij |γ

• LFR
0 (V ) was proposed as a multivariate

run length statistic to test if Xn and
Ym come from the same distribution
(Friedman and Rafsky, 1979)

9
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Shortest path (SP) through a graph

• Let G be a graph with m = |E | edges on n
vertices V

• π(XI ,XF ) a path over G btwn points XI

and XF

π(XI ,XF ) = (XI ,Xi1 , . . . ,Xil ,XF )

Xij+1
is neighbor on G of predecessor Xij

and XI = Xi0 , XF = Xil+1

• The shortest path is the solution to

LSPγ (V ) = min
π(Xi ,XF )

∑
Xi∈π(XI ,XF )

|Xij+1
− Xij |

γ

• Possible choices of G :

• kNN graph
• MST
• Complete graph

• Computational complexity is O(m+nlogn)

10
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From local to global structure: virus strain genotyping in epidemiology
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Local vs global properties of Euclidean graphs

Let G = {Xn,E} be a graph over Xn with edges E .
Define L : G → IR be a property of G , e.g., the sum of its edge weights.

• L(Xn) is a global property of G
• L(F ) is a local property of G if F is a localized subset of Xn

Certain global properties of G are stable with respect to local properties
⇒ continuous and quasi-additive functionals L

Examples: sum of edges, sum of vertex degrees, degree distribution of kNN and
MST
Non-examples: length of k-point MST, lengths of shortest paths in kNN

12
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Continuous and quasi-additive graph functionals (Yukich [1988])

A global property Lγ(F ) is a continuous quasi-additive graph functional if
• Translation invariance and homogeneity

∀ x ∈ IRd , Lγ(F + x) = Lγ(F ), (translation invariance)

∀ c > 0, Lγ(cF ) = cγLγ(F ), (homogeneity)

• Null condition: Lγ(φ) = 0, where φ is the null set
• Subadditivity: There exists a constant C1 with the following property: For

any uniform resolution 1/m-partition Qm

Lγ(F ) ≤ m−γ
md∑
i=1

Lγ(m[(F ∩ Qi )− qi ]) + C1m
d−γ

• Superadditivity: For same conditions as above, there exists a constant C2

Lγ(F ) ≥ m−γ
md∑
i=1

Lγ(m[(F ∩ Qi )− qi ])− C2m
d−γ

• Continuity: There exists a constant C3 such that for all finite subsets F
and G of [0, 1]d

|Lγ(F ∪ G)− Lγ(F )| ≤ C3 (card(G))(d−γ)/d

J. Yukich, ”Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998.

13
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kNN and MST length functions converge to the HCT-α entropy

The following theorem holds for any continuous quasi-additive graph, e.g., kNN
and MST.

Theorem (Beardwood, Halton&Hammersley 1959, Steele 1997, Yukich 1998)

Let Xn = {X1, . . . ,Xn} be an i.i.d. realization from a Lebesgue density f
supported on compact subset of IRd . If 0 < γ < d

lim
n→∞

LMST ,kNN
γ (Xn)/n(d−γ)/d = βγ,d

∫
f (x)(d−γ)/ddx , (a.s.)

Alternatively, letting α = (d − γ)/d ,

1

1− α (Lγ(Xn)/nα − 1) → H̃α(f ) (a.s.)

Steele, Probability theory and combinatorial optimization, SIAM 1997.

Beardwood and Halton and Hammersley, ”The shortest path through many points,” Proc. Cambridge Philosophical Society 1959.

J. Yukich, ”Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998.

14
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FR length function converges to an information divergence measure

Let X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Ym} be independent and i.i.d. in IRd

with pdfs fX and fY , respectively. Then

Theorem (Henze (1999), Berisha (2015), Sekeh (2019))

Let n,m converge to infinity in such a way that n/(n+m) = p, p ∈ [0, 1]. Then

1− LFR
0 (X ∪ Y)

n + m

2nm
→ Dp(fx , fy ) (a.s.)

where Dp is Henze-Penrose (HP) divergence

Dp(f , g) = (4p(1− p))−1

(∫
(pf (x)− (1− p)g(x))2

pf (x) + (1− p)g(x)
dx − (2p − 1)2

)

Dp is an information divergence measure that gives a tight bound on Bayes
binary classification error.

N. Henze and M. Penrose, ”On the multivariate runs test,” Ann. of Statistics, 1999.

V. Berisha and AH, ”Empirical non-parametric estimation of the Fisher Information,” IEEE Signal Processing Letters, 2015.

S. Sekeh, M. Noshad, K. Moon, and AH. ”Convergence Rates for Empirical Estimation of Binary Classification Bounds.” Entropy, 2019.

15
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Application of HP divergence: a minibatch stopping rule (Noshad [2019])

Simulation: classification of 2 mean shifted 10 dim Gaussian densities

M. Noshad, L. Xu and AH, ”Learning to benchmark: determining best achievable misclassification error from trinaing data,”

arXiv:1909.07192, 2019.
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Shortest path between two points: uniform distribution

LSP
γ (V) = min

π(Xi ,XF )

∑
Xi∈π(XI ,XF )

|Xij+1 − Xij |
γ
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SP between two points: lensing effect of Gaussian distribution

LSP
γ (V) = min

π(Xi ,XF )

∑
Xi∈π(XI ,XF )

|Xij+1 − Xij |
γ
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Continuum limit of shortest path through complete graph

Let X = {X1, . . . ,Xn} be i.i.d. random vectors in IRd with marginal pdf f
hiving support set S. Fix two points xI and xF in IRd .

Define G as the complete graph spanning X

Theorem (Hwang, Damelin and AH 2016)

Assume that infx f (x) > 0 over a compact support set S with pd metric tensor
g . For γ > 1 the shortest path on G between any two points xI , xF ∈ S satisfies

LSP
γ (X )/n(1−γ)/d → Cd,γ inf

π

∫ 1

0

f (πt)
(1−γ)/d

√
g(π̇t , π̇t)dt︸ ︷︷ ︸

distγ (xI ,xF )

(a.s.)

where the infimum is taken over all smooth curves π : [0, 1]→ IRd with π0 = xI
and π1 = xF and C(d , γ) is a constant independent of f .

• S.-J. Hwang, S. Damelin, AH, ”Shortest path through random points,” Annals of Applied Probability, Volume 26, Number 5 (2016),

2791-2823. (arXiv:1202.0045).

19
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The continuum limit of shortest path as n → ∞
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Continuum limit of shortest path: ODE (Eikonal) variational form

Define
F (π, π̇) = f (π)(1−γ)/d

√
g(π̇, π̇)

Then Thm. implies normalized shortest path length converges to integral I

LSP
γ (X )/n(1−γ)/d → I (π, π̇) = Cd,γ inf

π

∫ 1

0

F (πt , π̇t)dt

Eikonal form: For initial point xI ∈ IRd consider the distance function DxI (x)
to any other point x 6= xI .

Then, for π = π(xI , x) and g(u, u) = ‖u‖2, constant contours of integral
I = I (x) can be represented as propagating fronts of DxI .

The distance function D is a viscosity solution of the Eikonal equation

‖∇DxI (x)‖ =

{
W (x), x ∈ S/{xI}

0, o.w .

where W = f (1−γ)/d (the speed of fronts of D).

Eikonal equations can be solved efficiently by Fast Marching (Sethian, 1996)
over discretized domain S of f .

21
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Numerical illustration: shortest path computation

• Histogram data on (d − 1)-dimensional simplex Ω ⊂ IRd

Ω =

{
x ∈ IRd : x1, . . . , xd ≥ 0,

d∑
i=1

xi = 1

}
.

• Equivalent linearly independent representation in hypertriangle S ⊂ IRd−1:

S =

{
x ∈ IRd−1 : x1, . . . , xd−1 ∈ [0, 1],

d−1∑
i=1

xi ≤ 1

}

Truncated Gaussian f (x) on S ⊂ IR2 n = 500, 000 realizations
22
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Numerical illustration: shortest path computation

• Domain S of distance function D discretized into md−1 cubic cells {Cj}
• Distance function DxI : S → IR+ computed by FM for an initial point

xI ∈ Cj

Distance function by FM (γ = 2, m2 = 80K) Shortest paths by FM

23
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Comparison: Eikonal ODE vs combinatorial Dijkstra

Table: CPU times (secs) for Fast Marching (n = 500, 000)

cells md−1 10000 20000 30000 40000 50000 60000 70000
d=2 0.06 0.12 0.17 0.26 0.32 0.37 0.45
d=3 0.16 0.28 0.43 0.65 0.75 0.92 1.12
d=4 0.27 0.7 0.99 1.44 1.92 2.23 3.26
d=5 0.69 1.2 2.03 2.98 3.33 4.66 5.36

Table: CPU times (secs) for Dijkstra

vertices n 1000 2000 3000 4000 5000 6000 7000
d=2 1.08 5.92 11.43 21.42 36.46 108.37 248.19
d=3 1.4 4.84 11.18 20. 32.36 111.48 259.31
d=4 1.14 4.51 10.66 19.14 31.11 113.12 272.03
d=5 1.12 4.54 11.6 21.43 32.87 102.57 247.6

Implementation: Python 3.6.1, Fast Marching from scikit-fmm 0.0.9, Dykstra from NetworkX

24
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Remarks

Random graph representation of information

• Many information measures have random graph representations.

• Random graphs can induce novel measures of information divergence.

• Graph-based divergence representations can be used to represent MI.
• HP divergence can be transformed to a MI measure (Sekeh [2019]) :

MIp(X ,Y ) = Dp(fX ,Y , fX fY )

• Thus obtain a direct graph estimator of dependency, w/o density estimation.
• HP dependency shares properties of Shannon MI (Sekeh [2019]).

From local to global properties

• Random graph representations can elucidate interplay between local and
global properties.

• Continuous quasiadditive global properties are stable wrt local
perturbations: length of kNN, FR.
⇒ Global continuum limit is additive integral function over local domains

• Non-Archimedian deviation of shortest path quantifies multiscale
interaction
⇒ Continuum limit of SP is the solution to a Eikonal ode

S. Sekeh and AH, ”Geometric Estimation of Multivariate Dependency,” Entropy, 2019.

25
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• Graph-based divergence representations can be used to represent MI.

• HP divergence can be transformed to a MI measure (Sekeh [2019]) :

MIp(X ,Y ) = Dp(fX ,Y , fX fY )

• Thus obtain a direct graph estimator of dependency, w/o density estimation.
• HP dependency shares properties of Shannon MI (Sekeh [2019]).

From local to global properties

• Random graph representations can elucidate interplay between local and
global properties.

• Continuous quasiadditive global properties are stable wrt local
perturbations: length of kNN, FR.
⇒ Global continuum limit is additive integral function over local domains

• Non-Archimedian deviation of shortest path quantifies multiscale
interaction
⇒ Continuum limit of SP is the solution to a Eikonal ode

S. Sekeh and AH, ”Geometric Estimation of Multivariate Dependency,” Entropy, 2019.
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Graph convolutional network (GCN) classifiers

GCN: a recently introduced DNN for classifying graph properties (Kipf [2016]).
Can perform

• Local classification/interpolation: node label prediction

• Global classification: graph label prediction

Source: F Wu et al, ”Simplifying graph convolutional networks,” ICLR 2019.

• S is graph kernel matrix that propagates node features
• Θ is matrix of weights that encodes node features

TN Kipf, M Welling, ”Semi-supervised classification with graph convolutional networks,” ICLR 2017. arXiv preprint arXiv:1609.02907,

2016.

27



Graphs&Information GCN GCN capacity Summary References

Application: classification of metabolic pathways from molecular features

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.
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Proposed GCN architecture

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.
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Performance comparisons on Kegg PPI database

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.
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Tuning the GCN

There is little understanding of the factors affecting GCN performance
Selecting the number of layers in the GCN is especially difficult

• Too few layers → ignore global graph topology → poor global sensitivity

• Too many layers → over-diffusion of local features → poor local sensitivity

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.
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Fundamental limits on GCN classification capacity

Theory for representational capacity of the GCN is just starting to appear

• Xu K, Hu W, Leskovec J, Jegelka S, ”How powerful are graph neural
networks?,” ICLR 2019.

• Magner A, Baranwal M, AH, ”The Power of Graph Convolutional
Networks to Distinguish Random Graph Models,” arXiv preprint
arXiv:1910.12954. 2019 Oct 28. .

This theory seeks to reveal factors that enable or disable accurate GCN
performance

Ultimate aim is to provide principles to guide reliable GCN design
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The power of GCNs to distinguish random graph models

Ingredients for our main result
• Graph G on n vertices are realizations drawn i.i.d. from a graphon W ∈ W
• Geometrize the space of graphons W with a metric: cut-distance
• Constrain distance δ between degree distributions of W0 and W1

• Formulate K layer GCN as a test between H0 : G ∼W0, vs H1 : G ∼W1

• Mixing time characterization of random walks on graphon samples
• Apply concentration inequalities to bound misclassification error

The following holds if the GCN has ”nice” activation functions and bounded
weight matrices.

Theorem (Magner (2019) Theorem 1)

Assume that K > Dlogn, for some constant D possibly depending on W0 and
W1. Assume the mean degree distributions of inputs G0 ∼W0 and G1 ∼W1

are separated by a small distance ≤ δ. Then, with high probability the
corresponding K -th GCN layer outputs Ĥ(0,K) and Ĥ(1,K) are indistinguishable,
i.e.,

‖Ĥ(0,K) − Ĥ(1,K)‖∞ ≤
δ

n

(
1 + O(n−1/2)

)
A. Magner, M. Baranwal, AH, ”The power of graph convolutional networks to distingusih between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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The power of GCNs to distinguish random graph models

Ingredients for our main result
• Graph G on n vertices are realizations drawn i.i.d. from a graphon W ∈ W
• Geometrize the space of graphons W with a metric: cut-distance
• Constrain distance δ between degree distributions of W0 and W1

• Formulate K layer GCN as a test between H0 : G ∼W0, vs H1 : G ∼W1

• Mixing time characterization of random walks on graphon samples
• Apply concentration inequalities to bound misclassification error

The following holds if the GCN has ”nice” activation functions and bounded
weight matrices.

Theorem (Magner (2019) Theorem 1)

Assume that K > Dlogn, for some constant D possibly depending on W0 and
W1. Assume the mean degree distributions of inputs G0 ∼W0 and G1 ∼W1

are separated by a small distance ≤ δ. Then, with high probability the
corresponding K -th GCN layer outputs Ĥ(0,K) and Ĥ(1,K) are indistinguishable,
i.e.,

‖Ĥ(0,K) − Ĥ(1,K)‖∞ ≤
δ

n

(
1 + O(n−1/2)

)
A. Magner, M. Baranwal, AH, ”The power of graph convolutional networks to distingusih between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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The power of GCNs to distinguish random graph models

Consider the case of noise-regularized GCN for which the output of each
neuron has additive uniform noise over [−εres , εres ].

Using Theorem 1, and concentration arguments + Le Cam’s method:

Theorem (Magner (2019) Theorem 2)

Assume that Dlogn < K � n1/2−ε0 and that εres >
δ
2n

. Assume the mean
degree distributions of inputs G0 ∼W0 and G1 ∼W1 are separated by a small
distance ≤ δ. Then the probability of error of any test for distinguishing
between W0 and W1 based on the K -th GCN layer output is at least(

1− δ

2εresn

)n

A. Magner, M. Baranwal, AH, ”The power of graph convolutional networks to distingusih between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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The power of GCNs to distinguish random graph models

We obtain a converse to Theorems 1 and 2:

Theorem (Magner (2019) Theorem 3)

Let W0 and W1 be δ-separated graphons. Then there exists a test the
distinguishes with probability 1− o(1) between samples G0 ∼W0 and G1 ∼W1

based on the output of the K -th GCN layer, with identity weight matrices and
activation functions, provided that K > Dlogn for sufficiently large D and
εres ≤ δ

2n
.

I.e., a simple, linear GCN is sufficient for distinguishing δ-separated graphons.

Recovers empirical results of (Wu [2018]).

F Wu, T ZHang, A de Souza, C Fifty, T Yu, KQ Weinberger, ”Simplifying graph convolutional networks,” ICML 2019.
A. Magner, M. Baranwal, AH, ”The power of graph convolutional networks to distinguish between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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Example: Indistinguishable stochastic block models

We exhibit a concrete family of graphons that are

• well-separated from each other in cut distance and

• 0-separated in terms of degree distribution:

Consider 2-block SBM with density parameters P∗ = (p∗1 , p
∗
2 , q
∗). Define the

parameter set

P = {P : (0, 0, 0) ≺ P = P∗ + τ · (1, 1,−1) � (1, 1, 1)} (1)

and consider SBMs with parameters coming from P.

Theorem (Magner (2019) Theorem 4)

For any pair W0,W1 parameterized by P, assume K > Dlogn as before. Then
with high probability the corresponding K -th GCN layer outputs Ĥ(0,K) and
Ĥ(1,K) are indistinguishable, i.e.,

‖Ĥ(0,K) − Ĥ(1,K)‖∞ = O(n−3/2+const). (2)

An analogous error probability lower bound holds.
A. Magner, M. Baranwal, AH, ”The power of graph convolutional networks to distinguish between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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Elements of the proofs

Start with a linear GCN with identity weight matrices: the K -th GCN layer
outputs the embedding matrix

M̂(K) = ÂK , (3)

where Â is the normalized adjacency matrix of the input graph.

If K is close to the ε-total variation mixing time of the random walk on G , then
the rows of Â are close to the stationary distribution – a function of the vertex
degrees.

Mixing time is Θ(log(n/ε)) for graphons satisfying mild assumptions.

Several analytic details allow us to extend our analysis to a class of nice
activation functions and non-identity weight matrices.
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Remarks on GCN theory

• The problem of distinguishing random graph models from representations
of samples can be used as a canonical downstream task for
evaluating/comparing representation learning methods

• This is first result we know of that quantifies performance limitations of
GCN’s over graph classes

• Theorems are tight for distinct SBM’s having the same degree distribution
(Magner [2019], Thm 4).

• Characterization of dependence of D on W1 and W0 could provide
guidelines for selecting K

• Our theory is limited to dense graphs.

• Extensions to sparse graphs, e.g. graphex’s, would be worthwhile next step
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Summary remarks

• Local and global information can be studied using random graphs.

• Random graphs can induce novel measures of information divergence.

• Graphon random graph models can enable sharp results on representation
and classification of graphs by neural networks.
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