Genetic network complexity: weights matter more than topology

Mikhail Tikhonov and William Bialek

Joseph Henry Laboratories of Physics, Lewis-Sigler Institute for Integrative Genomics, Princeton University

1. Appropriate level of description?

Can we understand genetic networks like we understand electronic circuits?
Not every detail matters, but knowing only topology is insufficient.
Goal: build a toy model where the appropriate level of description can be constructed explicitly. How much do microscopic quantitative details matter?

2. Model: weighted graphs and complexity

Genes: binary variables; interactions have variable strength.
A gene is activated if its inputs exceed a threshold:
\[s_i = \text{sgn}\left(\sum_j J_{ij}s_j + h_i \right) \]

\textit{Capacity} of a network: number of solutions (= number of cell types it can encode)
Each node implements a Boolean function from a \textit{finite} set with a \textit{non-arbitrary measure}.
For a given topology, we can enumerate all of its \textit{non-equivalent and equiprobable} (!) realizations as a weighted graph.

Define \textit{complexity} as the diversity of possible causal relations in the graph.
Links are satisfied or frustrated. Define an \textit{active} link as a link whose satisfied state is essential for equation (1) to hold. Each solution defines a binary sequence: the pattern of active links. Define diversity of a set of sequences as the length of the shortest path connecting all of them on a hypercube (traveling salesman).

How is complexity affected by the choice of topology vs. the choice of weights?

3. Conclusions: weights matter more

1. Relative importance of weights vs. topology is of order 1.
2. Optimal weights outperform optimal topology (for 85% of topologies with \(N \leq 10 \))
3. Larger networks are not automatically more complex

For an information-processing network:

1. Topology and weights have effects of the same order.
2. High-complexity graphs operate in a non-generic parameter regime.
3. Evolving weights is a better strategy than changing topology / adding nodes

This work was supported by the Center for Science of Information (CSoI), NSF Science and Technology Center. CCF-0939370