Graph Classification

 Classify a graph based on
connectivity via probabilistic
observations of edges

« Applications: Epidemic prediction/
detection, Social network analysis

« Objective: Balance cost of sampling
with classification performance
 Framework: Sequential Hypothesis
Testing with Control

Mathematical Model

Real Observed Edge
Real Unobserved Edge
Spurious (False) Edge

Fixed underlying graph G = (V,E)
At each time select a node to observe (Red, Control)
When node i is selected, observations y are subset of
possible incident edges
Real edges are observed with probability p
Spurious edges are observed with
probability g < p
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Degree of a node: Number of edges incident to node
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Average node degree: dg; = IV—I
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» Let ¢;; be possible edge between verticesi,j
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Controlled Sensing

« Framework for hypothesis testing
with control [1,2]

« Control affects quality of
observations rather than evolution of
information state
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Problem Formulation

« Define two classes of graphs
G, ={G:|V|=N.d, <n}
G, ={G:|V|=N.d, >n}

« Threshold for high connectivity 1
« Binary Composite Hypothesis Test

H,:Geg,
H :Geg
* Proposed controlled sensing

algorithm gives asymp. optimal error
decay with sample size by [1,2]

Graph Estimation

Simple Maximum-Likelihood Approach

Let 7.(k)={Times node i is sampled up to time k}
T,(k)=T,(k) U T, (k)
[, = #of times edge ¢, 1s observed
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Solvable in linear time in N
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Proposed Algorithm [3]

At each time Kk,
1. Find maximum-likelihood estimate of
graph G=GO*u"eg A
2. Estimate hypothesisi(k) from G
3. Stop if (stopping rule)
: I Pé(ykauk)
ming ; 108 P.(yF )
where P.(y*,u") is the induced joint
distribution of the observations and
controls.
Else, select next node u, , to observe
according to distribution ¢ solving

N
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where Bis a designh parameter (control policy)

>log B where j #1

Stopping Rule

 Minimizer found by moving edges
from G“to G (G € G,) or vice versa(G € G)

» Consider G € ¢,

» Define cost of moving edge ¢, € G

5, = l,.j(k)log% +( 7,001, (0 ) og i - Z

2

¢ Minimum value is sum of [(n—Eé)N]

weights X -
« Analogous for GG, (swap G,G9),
negate o,
« Solvable in O(NlogN) time

Control Policy

« Two player zero-sum game
Player 1: Choose control to maximize
avg. KL-distance between estimate andg,
Player 2: Choose graph under g,
to minimize avg. KL-distance

 Pose in terms of incidence matrix (Geg,)
max_ ., min,_,gM ..x

P,, = Probability distributions on N nodes
IS = Edges to insert into G to be in g,
M s = Incidence Matrix of G€

» LP Relaxation

max, ., min
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{xeR 620, = In-d N /2]
« Analogous when Geg, (swap G,G)

A Controlled Sensing Approach to Graph Classification

Numerical Results [3]

« Consider the following 20 node graph with
average node degree 8.9

« Comparison to frontier sampling [4], a
weighted random walk technique with no
spurious edges, 1 =28.8

~Cantrolled Sensing vs FS: p=0.7
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« With spurious edges, random walks fail

Controlled Sensing: n=8.8 Controlled Sensing: n=9.0
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Conclusions and Future Work

* Proposed an asymptotically optimal sequential

hypothesis test with control to classify graphs
by connectivity

« Future work involves validation on large data
sets, computationally simple approximations of
the controlled sensing scheme
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