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Introduction

I In fields such as compressed sensing or statistical learning, a basic model
problem is to recover a sparse signal x̄ ∈ Rn from a set of noisy linear
measurements y = Ax̄ + v ∈ Rm, where m ≤ n. Ideally, the optimal
reconstruction method is the l0 norm minimization method:

min
x∈Rn

‖x‖0 s.t. Ax = y. (1)

Since (1) is a hard combinatorial problem, l1-minimization (BP) is usually
adopted as a computationally tractable alternative to (1).

I Recently however, there is a trend to consider nonlinear functions in place of
the l1 cost functions. In other words, a general cost function
J(x) :=

∑n
k=1 F (|x(k)|) is employed. Examples of such an F include:

• lp cost function (0 < p < 1) [4], in the form of ‖x‖pp.
• Approximate l0 cost functions, c.f. [5, 2].
Various practical algorithms can be adapted to these nonlinear problems, e.g.
IRLS, iterative thresholding, and zero point attracting projection. In general
the nonlinear algorithms empirically outperforms BP, because nonlinear cost
functions can better promote sparsity than the l1 cost function.
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I Now two questions naturally arise: the exact recovery condition (ERC), which
requires that all sparse signals can be exactly recovered in the noiseless
case, and the robust recovery condition (RRC), which requires that if the
measurement is noisy, then the reconstruction error must be bounded by the
norm of the noise vector multiplied by a constant factor.
Previous work [4, 1] showed that ERC is equivalent to RRC for the special
case of lp-minimization. In contrast, the relation between ERC and RRC for
general F -minimization cannot be established without new ideas.

Problem Setup and Key Definitions

We consider the linear observation setting described in the Introduction.
I In the noiseless case, the sparse signal is retrieved by solving:

min
x∈Rn

J(x) s.t. Ax = y. (2)

We say (A, J) satisfies the exact recovery condition (ERC) if for any k -sparse
x̄ and measurement y = Ax̄, x̄ is also the unique solution to (2).

I In the noisy measurement (v 6= 0) case, the sparse signal is retrieved from:

min
x∈Rn

J(x) s.t. ‖Ax− y‖ < ε, (3)

where ε ∈ R+ is a constant chosen to tolerate the noise. We say that the
robust recovery condition (RRC) is satisfied if for any k -sparse signal x̄, any
noise v satisfying ‖v‖ ≤ ε, and any feasible solution x̂ satisfying
J(x̂) ≤ J(x̄), we have

‖x̄− x̂‖ < Cε, for some C fixed. (4)

I we shall next consider a class of functions wide enough such that most
practical sparsity inducing cost functions are subsumed: a function

F : [0,+∞)→ [0,+∞) (5)

is called a sparseness measure if the following two conditions are satisfied:
• F (| · |) is sub-additive on R;
• F (x) = 0 if and only if x = 0.
We denote byM the set of all sparseness measures.

Equivalence Lost: A Topological Characterization of RRC

We show that the equivalence of ERC and RRC no longer holds when passing from
lp-minimization to F -minimization.
I For Lebesgue-almost all measurement matrix A, the null space of A corresponds to an element

in Gl(Rn); and we can show that this element is sufficient to determine whether ERC and RRC
are satisfied. Hence we shall examine ΩJ,Ωr

J ⊂ Gl(Rn), which denote the collection of the null
spaces satisfying ERC and RRC, respectively.

I For example, if two cost functions induced from the sparseness measures F ,G ∈M satisfy
the following condition

ΩJG
⊆ ΩJF

, (6)
then ERC for G-minimization implies ERC for F -minimization, i.e., F is better a sparseness than
G in the sense of ERC. In the light of this we can describe and compare the performances of
different sparseness measures in terms of ERC by a simple set inclusion relation like (6).

I Theorem 1: Consider the minimization problem in (3). The RRC holds if and only if there exists
a d > 0, such that for each z ∈ N (A) \ {0}, n ∈ Rn, T ⊆ {1, ..., n} satisfying ‖n‖ < d‖z‖,
and |T | ≤ k , we have the following:

J(zT + nT ) < J(zT c + nT c). (7)

I There is a nice interpretation of Theorem 1 in terms of point set topology:
Theorem 2: With the standard topology on Gl(Rn), the following relation holds.

Ωr
J = int(ΩJ). (8)

Proof idea: Theorem 1 and canonical coordinates of Gl(Rn).
I Define the null space constant

θJ := sup
z∈N (A)\{0}

max
|T |≤k

J(zT )

J(zT c)
. (9)

Corollary 1: If F is continuous, then θJ : Gl(Rn)→ [0,+∞) is a lower semi-continuous
function. Further, θlp : Gl(Rn)→ [0,+∞) is a continuous function.

I For the special case of lp-minimization, our interior set characterization leads to a topological
proof to a previous result:
Corollary 2: If 0 < p ≤ 1, then Ωlp is open, hence Ωr

lp = Ωlp.
Proof idea: Show that Ωlp is the pre-image of the open set (−∞, 1) under the continuous map
θlp : Gl(Rn)→ R.

Equivalence Regained: the Probabilistic Equivalence

In practice the measurement matrix A is usually generated by using i.i.d. entries drawn from
some continuous distribution. In this case, with some mild (but not redundant) monotonicity
assumption of F , we show that RRC and ERC still occur with the same probability. (Note that
this does not immediately follows from Theorem 2).
I Theorem 3: Suppose F ∈M is a non-decreasing function, then µ(ΩJ \ Ωr

J) = 0, where µ
denotes the Haar measure on the Grassmannian Gl(Rn).
Proof idea: Use Lebesgue density theorem in measure theory and the canonical coordinates
of Gl(Rn).

I Remark: If the assumption that F ∈M is a non-decreasing is dropped, then one can cook up
counterexample in which µ(ΩJ \ Ωr

J) > 0.
I A trivial observation from Theorem 2 is that the probability of ERC and RRC are the same if the

observation matrix A has i.i.d. Gaussian entries, since in this case the probability agrees with
the measure µ. More generally, suppose P is the probability measure corresponding to the
distribution of the null space of A, and P is absolutely continuous with respect to µ, then
P(ΩJ \ Ωr

J) = 0. One can show that this absolute continuity holds if the entries of A are i.i.d.
generated from a certain continuous distribution, therefore we have:
Corollary 3: Suppose F ∈M is a non-decreasing function, and the distribution of the matrix A
is absolutely continuous with respect to the Lebesgue measure on M(m, n). Then the
probability of ERC and RRC are the same. This holds true in particular when A has i.i.d. entries
drawn from a continuous distribution.
Proof idea: absolute continuity of a measure on Rm×n⇒ absolute continuity of the induced
measure on Gl(Rn).

A Toy Example

Consider the function

F (x) := x + 1− e−x (10)

defined on [0,+∞) which is a spareness measure. Suppose that
x, y > 0, z = x + y , k = 1, and that the null space of the
measurement matrix is a one dimensional subspace of R3:

N := [x, y , z]T , (11)

where the homogenous coordinates [x, y , z]T denotes the
subspace spanned by (x, y , z)T . Conclusion: ERC is satisfied, but
not RRC.
I In fact, using the null space property [4, 3](a famous property in the

study of compressed sensing, which we do not explain in detail
here) and Theorem 1, one can show that

ΩJ =

[x1, x2, x3] : 2 max
i=1,2,3

|xi| ≤
∑

i=1,2,3

|xi|

 , (12)

Ωr
J =

[x1, x2, x3] : 2 max
i=1,2,3

|xi| <
∑

i=1,2,3

|xi|

 . (13)

I In the above it is clear that ΩJ is an closed set while Ωr
J is an open

set, since they are preimages of a closed (resp. an open) set under
a continuous mapping. Without bothering with rigorous proofs, it’s
also intuitively clear that ν(ΩJ \ Ωr

J) = 0 (think of a low
dimensional analogy of sets (−∞, 1] and (−∞, 1)).
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