Motivation
- To characterize efficient communication for a receiver with limited source of energy.

System Model
- Power is limited or stochastic at the receiver
 \[\bar{W} = E[W] \]

Applications
- Wireless sensor networks.
- Short-range communication

Power Consumption at the Receiver
- **Fixed**
 \[P_{\text{receiver}} = P_{\text{mix}} + P_{\text{sig}} + P_{\text{LNA}} + P_{\text{filter}} + P_{\text{IFA}} + P_{\text{ADC}} + P_{\text{D}} \]
- **Small**
 \[P_{\text{ADC}} \approx 3V^2f_{\text{min}}(2B + f_{\text{foc}}) \]
 \[E_{\text{sampling}} = \frac{1}{B}(3V^2f_{\text{min}}(2B + f_{\text{foc}}) + 105.8mW) \]
 (Shuguan Cui, A.J. Goldsmith, and A. Bahai 2005)

Performance Metric
- Reliable Communication Rate:
 \[\rho(t) = \frac{1}{t} \sum_{i=1}^{N(t)} R_i I_i \]
 \(N(t) \) the number of codewords sent by time \(t \).
 \(R_i \) the code rate of packet \(i \).
 \(I_i = 1 \) if the receiver decodes the packet \(i \) reliably.

Dropping a Sample: Erasure Channel
- C = capacity of original channel
- \(\lambda = \) sampling rate =1- erasure rate
- CA = capacity of the new channel
 (S. Verdu and T. Weissman, 2008)
- Conjecture: Decoding energy is an increasing function of the code rate \(R \) that diverges as \(R \) approaches capacity:
 \[O((n/\delta) \ln(1/\delta)) \]
 ([A. Khandekar and R.J. McEliece, 2001]
 [T. Richardson and R. Urbanke, 2003])

The gap to the capacity: \(\delta = 1 - R/CA \)

Sampling and Decoding Energy Tradeoff
- Total Energy Consumption:
 \[nE = s + nE_D \left(\frac{R}{C\lambda} \right) = n \left[\lambda + E_D \left(\frac{R}{C\lambda} \right) \right] \]

Optimum Communication for a Fixed Code Rate
- Outerbound:
 It can be shown that for a fixed code rate \(R \): \[\rho \leq \frac{\bar{w}R}{E(R)} \]
- Achievability:
 Variable-Timing Transmission: \(Tx \) inserts idle periods between codewords to give the Rx time to decode and recharge its battery for sampling the next codeword.
 Fixed-Timing Transmission: \(Tx \) sends codewords without idle periods between transmissions. Rx may drop some packets to collect energy or do decoding.

Code Rate Optimization
- \(\hat{\rho} = \max_{R, \lambda} \frac{\bar{w}R}{E(R)} \)
 s.t. 0 < R < C \lambda

 \[\lambda \leq \lambda_{\text{max}} \]

- \(\lambda_{\text{max}} = \min \{ \beta + \bar{w}, 1 \} \)

- \(\hat{\lambda} = \lambda_{\text{max}} \)
 \[\hat{\rho} = \frac{\bar{w}C\lambda_{\text{max}}}{E_D(R/C\lambda_{\text{max}})} \]

Summary
- At low code rates, the receiver has tradeoff between sampling and decoding.
- Sampling energy, even if it is small, may limit the communication rate.
- Fixed-timing transmission may not achieve the energy constraint outerbound.