Communication system

- Vector $\mathbf{x} \in [0,1]^k$ drawn from a discrete-time continuous alphabet source transmitted over an n-dimensional Gaussian channel

$$x \in \mathbb{R}^k, \quad y \in \mathbb{R}^k, \quad z \sim \mathcal{N}(0, \sigma^2 I_n)$$

1. Bandwidth expansion ratio n/k
2. Under constraint $\mathbb{E} \left[\left\| \mathbf{s}(\mathbf{x}) \right\|^2 \right] \leq P$, minimize MSE
 $$\text{MSE} = \frac{1}{k} \mathbb{E} \left[\left\| \mathbf{x} - \hat{\mathbf{x}} \right\|^2 \right].$$

Information-Theoretical Limits

- Rate-Distortion Theory + Separation Principle:
 $$D \geq \frac{1}{2 \pi e (1 + \text{SNR})^{n/k}}$$
- Achievable with arbitrarily long (digital) block codes and infinite delay.
- Question: How to design explicit and efficient analog mappings
 $$\mathbf{s} : [0,1]^k \rightarrow \mathbb{R}^n$$
 with asymptotically optimal behavior
 $$\text{MSE} = \Theta(\text{SNR}^{-n/k})$$
 - If $\mathbf{s}(\mathbf{x})$ is linear, then $\text{MSE} = \Theta(\text{SNR}^{-1})$. Thus we must consider non-linear functions.

Cramér-Rao Bound and Low-Noise Approximation

The Cramér-Rao bound on the MSE for this model can be evaluated as

$$\frac{1}{k} \mathbb{E} \left[\left\| \mathbf{x} - \hat{\mathbf{x}} \right\|^2 \right] \geq \frac{\sigma^2}{k} \int_{[0,1]^k} \text{tr}(J(\mathbf{x})^t J(\mathbf{x}))^{-1} d\mathbf{x},$$

where $J(\mathbf{x})$ is the Jacobian of $\mathbf{s}(\mathbf{x})$. In fact, if the noise is small (smaller than the distance between two “segments” of the curve), the MSE is well approximated by the CR-bound.

Threshold Effect

Design criteria:

- Maximize distance between “segments” of the locus $\mathbf{s}(0^k,1^k)$.
- “Stretch” the locus as much as possible/equally in each direction.

The mod-1 map

For $A \in \mathbb{Z}^n \times k$, we consider the piecewise linear map

$$s_i(\mathbf{x}) = (A(\mathbf{x}))_i := A\mathbf{x} \mod 1 = A\mathbf{x} - \lfloor A\mathbf{x} \rfloor.$$

The map is injective if A is a primitive set of vectors in \mathbb{Z}^n (i.e., can be completed to a basis). Image consists of parallel “planes” inside the box $[-1/2,1/2]^n$.

Distance between two segments:

$$\delta = \min_{n \in \mathbb{Z}^p} \min \left\| A\mathbf{x} - n \right\|$$

= the norm of the shortest vector in the lattice obtained by the projection of \mathbb{Z}^p onto A^\perp. Tradeoff between minimum distance/determinant:

$$\rho = \frac{\alpha \delta^2}{2} = \frac{2 \sqrt{\det(A^\perp A)^{1/(n-k)}}}{\sqrt{n \det(A^\perp A)^{1/(n-k)}}}.$$

Analysis of the map

When there are no large errors:

$$\text{MSE} \approx \frac{\sigma^2}{12 k^P} \frac{n}{\text{det}(A^\perp A)^{-1}},$$

but to meet the small error conditions we need ρ to be large \Rightarrow $\text{det}(A^\perp A)$ small. To achieve optimal exponent we need a family of matrices with:

1. (Injectivity) The columns of A are primitive.
2. (Minimum distance) The density of the projections of \mathbb{Z}^n onto A^\perp is bounded away from zero.
3. (MSE Exponent) $\text{tr}(A^\perp A)^{-1} = O(\text{det}(A^\perp A)^{-1/k})$.

(3.) is trivially satisfied if A is orthogonal. For some parameters ($k = n - 2, n - 1$) constructions are possible. However, orthogonality + primitivity + good projections are hard to ensure simultaneously.

Ex: $n - 1$ to n

Consider the matrix:

$$A_w = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & w
\end{bmatrix}$$

Condition (1) and (2) are straightforward. Condition (3):

$$\text{det} A_w^w A_w = \Theta(\text{w}^{2n-2})$$

and $[(A_w^w A_w)^{-1}]_{ij} = O(1/w^2)$. The associated mod-1 maps will have optimal exponent.

An Alternative Mapping: Modifying the support

By a matrix factorization, we can find Q and R, where $\det R = 1$ and columns of Q orthogonal, such that $A = QR$. Then the mapping:

$$s_Q : S \rightarrow \mathbb{R}^n$$

where $S = R[0,1]^k$ yields an asymptotically optimal family (provided that A is chosen according to good projections). However the source is now $S \neq [0,1]^k$ a parallelogram. If R^{-1} is applied to go back to $[0,1]^k$, it is possible that small errors will be magnified. To go back to the support $[0,1]^k$ we need an application that acts like an isometry.

Dissections of polyhedra

Idea: use s_Q and a bijection between the cube $[0,1]^k$ and S provided by a dissection to come back to the original support.

- **Dissect** $[0,1]^k$ and S into m non-overlapping polyhedra T_1, T_2, \ldots, T_m and S_1, S_2, \ldots, S_m so that $[0,1]^k = \bigcup_{i=1}^m T_i$, $S = \bigcup_{i=1}^m S_i$ and $T_i = \phi(S_i)$, where ϕ is an isometry. Define the map $s(\mathbf{x}) = s_Q(\phi(S_i))$ if $\mathbf{x} \in T_i$. Discontinuities can cause large errors. Solution: shrinking factor.

Proposition: For $k = 2$, there is a family of matrices and a proper choice of the shrinking factor such that $\text{MSE} = \Theta(\text{SNR}^{-n/2})$.

(very short) sketch of the proof: Choose a sequence of projections similar to $[2]$ that exhibits optimal behavior after dissecting before reassembling. If the shrinking factor is chosen properly, the degradation caused by the dissection technique is exponentially small, keeping the right behavior.

References

Acknowledgments

This work was partially supported by São Paulo Research Foundation (FAPESP) under grant 2012/09167-2. Antonio Campello would like to thank AT&T Labs-Research, Shannon Laboratory, Florham Park - NJ.