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Foundations of Data and Visual Analytics
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The FODAVA Mission:

To develop and advance the mathematical and
computational foundations of data and visual
analytics through innovative research,

s educational programs, and the development of
l'O,'é‘ N — workforce to address the challenges of
puno:, extracting knowledge from massive, complex

data.



Data and Visual Analytics

The Science of Analytical Reasoning facilitated by
Automated Methods for Data Analysis and

Interactive Visual Interfaces. (based on Thomas and Cook,
llluminating the Path: the research and development agenda for visual
analytics, 2005)

Data Mining/Data Analysis

Data = Information =  Knowledge

 ——

Visualization




“Solving a problem simply means
representing it so that

the solution is obvious.”
Herbert Simon, 96



Challenges and our Approaches
for Interactive Analysis of
High Dimensional Large-scale Data

Challenges:

— Data are Massive, High-dimensional, Nonlinear, Unstructured,
Imperfect, Heterogeneous, Time-varying, ...

— Limited Screen Space and Limited Visual Perception
— Need for real-time Interaction

Our Approaches:
— Scalable and Robust algorithms:
works even when parts of the data are missing
— Integrated analysis: Representation of heterogeneous data on one map
— Fast Interaction: scalable, real-time, adaptive, on-line algorithms
— Severe dimension reduction: but key info preserved as much
— Informative representation of large volume of data



FODAVA Research Test-bed for
Visual Analytics of High Dimensional Data
http://fodava.gatech.edu/fodava-
testbed-software

Library of key computational methods for visual analytics of high dimensional data
Modular: A base for specialized VA systems
Supports various dimension reduction, clustering, and

their visual representations and comparisons through alignments
Application domains: document analysis, bioinformatics, healthcare, computer vision, ...
Languages: backend library in Matlab, GUI in JAVA (no need for Matlab installed)
System support: Windows 32/64 bit, Linux 32/64 bit
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Testbed Modules and Overview

* Computational modules * Interactive visualization modules
« Vector encoding * Scatter plot
» Pre-processing Parallel coordinates
o C|ustering Cluster summary
« Dimension reduction Raw data view
Brushing and Linking
¢ Space alignment
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Fast Comp. Modules for Interactive Vis.

PCA timing: double vs single precision

C I AIREESEET Al ABEEIARTANESE G YA B o iaY S

Essential for real-time
Interaction

Let computational precision be
governed by visual precision/
resolution

Hierarchical refinement
Adaptive algorithms

==j== |SOMAP (k=initial K)
24 == p-ISOMAP (k:Initlal K->Initlal K-2)
=8 p-ISOMAP (k:Inltlal K->Inltial K+2)

p-Isomap computing time vs.
# of nearest neighbors




 Dimension Reduction
* Linear and Nonlinear methods: PCA, FA, ProbPCA, LDA, OCM, NPE,
LPP, LLTSA, NCA, MCML, MDS, Isomap, LLE, LTSA, Sammon,
HessLLE, MVU, LandMVU, KernPCA, GDA, DiffMaps, SPE, AutoEnc,
LLC, ManiChart, CFA, GPLVM, SNE, T-SNE
* Recursive dimension reduction: apply dimension reduction on user-
selected data

- Clustering
» Hierarchical clustering, K-means, spherical K-means, GMM, NMF,
constrained K-means, DisCluster/ DisKmeans [J. Ye]
» Cluster summary for document data
« Semi-supervised clustering
» Color-coded cluster/class labels

- Classification
» K-nearest neighbors classifier, SVM, Logistic regression, Naive Bayes



Key Computational Methods

* NMF (Nonnegative Matrix Factorization) and its variations:
for dimension reduction and clustering

« LDA/GSVD (Linear Discriminant Analysis) and its variations:
for informative 2D representation of
clustered and large scale data

» Orthogonal Procrustes and MDS (Multi-Dimensional Scaling):
for space alignment and comparisons of visual representations



Nonnegative Matrix Factorization (NMF)

(Paatero&Tappa 94, Lee&Seung NATURE 99, Pauca et al. SIAM DM 04, Hoyer 04, Lin 05, Berry 06,
Kim and Park 06 Bioinformatics, Kim and Park 08 SIAM Journal on Matrix Analysis and Applications, ...)

A N |/ =>min || A—- WH ||
W>=0, H>=0

* Why Nonnegativity Constraints?

*Better Approx. vs. Better Representation/Interpretation
*Nonnegative Constraints often physically meaningful, interpretable

* Fast Algorithms for NMF, with theoretical convergence (. kimand H. Park, IDcMos)
NMF/ANLS: Iterate the following with Active Set-type Method (ANLS/BPP)
fixing W, solve ming._, || W H -A||¢
fixing H , solve min,._, || H" WT -A'||¢
* Software available at www.cc.gatech.edu/~hpark

 NMF variants developed for clustering, topic modeling, and graph clustering
(sNMF, tNMF, SymNMF, hierarchicalNMF, BMF for recommender system,...)



NMF and K-means

« Clustering and Lower Rank Approximation are related.
— NMF for Clustering: (ping et al. SDM 05; Kim & Park, TR 08)
— Document (xuetal. sicir 03), Image (caietal. icom0s), Microarray (kim & Park, Bio 07), €tc.
— Min 3 /<i<p |l @We;[* mp min || A-WH |2
o, =J when /-th point is assigned to j-th cluster (j = {1, ..., k} )

K-means: W: k cluster centroids, h;: cluster membership indicator
NMF: W: basis vectors for rank-k approx., h;: k-dim rep. of a,
Sparse NMF (for Sparse H) (H. Kim and Park, Bioinformatics, 07)

minyy, o { NA-WHIIEZ + 0 IWIE2 + B S 1z e I1HG, D12 D, Vi, Wy H20

* ODbj. fun. of K-means and NMF are related when H € E and
A = 0, but their performances may be very different.



NMF for Clustering
| diclusters | 2 | 6 | 10 | 14 | 18

K-means 0.7867 0.5137 0.4191 0.4529 0.3403
NMF/ANLS 0.9257 0.6934 0.5568 0.5654 0.43130

K-means 0.8099 0.7295 0.7015 0.6675 0.6675
NMF/ANLS 0.9990 0.8717 0.7436 0.7021  0.7160
SNMF/ANLS 0.9991 0.8770 0.7512 0.7269 0.7278

Clustering Accuracy
on Reuters-21578
and TCT2

NMF is faster by
factor of 2 at least

TDT2 | Reuters _ [NIPS_____|ORL ____|ExtYaleB

Dimension

# data

points

# clusters

Kmeans

Ker. Kmeans

NMF
GNMF

SymNMF

26,618
8,741
20
0.6734
0.6789
0.8534
0.8077
0.8979

12,998
8,095
20
0.4289
0.3455
0.3770
0.4441
0.5305

17,583
420

9
0.4650
0.5071
0.4877
0.4894
0.5129

69x84
400

40
0.6499
0.6858
0.7020
0.7282
0.7798

56x64
2,414
38
0.0944
0.1692
0.1926
0.2109
0.2307




Linear Discriminant Analysis for
2D/3D Representation of Clustered Data

(J. Choo, S. Bohn, HP, VAST09)

Max trace (G'S, G) & min trace(G’ S, G)
LDA/GSVD

max trace
(GT(S,,+ ul)G)(G' S, G)




2D Visualization of Clustered Text, Image, Audio Data
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Information Fusion and Visual Comparisons
based on Space Alignment (J. Choo, S. Bohn, G. Nakamura, A. White, HP)

« Want: Unified visual representations of different results
* Assume: Reference correspondence information between data
pairs or cluster correspondence
« Two conflicting criteria:
maximize alignment and minimize deformation

« Graph embedding approach (MDS) - Procrustes analysis

min || (A-u,1")-kQ(B-1g17)l|
QTQ=/

Fused data

Data sets  Similarity graph



Space Alighment
by Orthogonal Procrustes

min || (A-u,17)-kQ(B-ug1')||z , where QTQ=/

Alignment of Dimension Reduction Results

Reference Aligned Un-Aligned




Cluster Alignment: Label Matching and Space Alignment
Reference Aligned Un-Aligned

5P1: Original Label, Isomap = 1 'E”E‘ S5P3: Kmeans, Isomap = 1 'E”E‘ 5P2: Kmeans, Isomap =

V| Centroid |V Ellipse | Centroid |V Ellipse | Centroid || Ellipse
e

[ SP8: Kmeans, TSTG = CAQ- SP7: NMF, TSTG 32| SP9: NMF, TSTG ==
4

V] Centroid [] Ellipse Centroid [/] Ellipse

* InfoVis and VAST paper data set
 Help refine cluster results and obtain consensus clustering




iIVisClassifier

(J. Choo, H. Lee, J. Kihm, HP, VAST10)

Interactive visual analytics system for classification of high-dim.
data (image, text, etc) and search space reduction

Pl | 4/ Interactive Visual Classifier 10 (c)2010 Georgia Institute of Technology
File Scatter Plot Parallel Coordinates TestData Point Help

B =h o x|

LDA Regularization

== —
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VisIRR: Visual Information Retrieval and
Recommendation System for Document Discovery

Our differentiators:

* Improves personalization and understandability via
integrated visualizations of
document retrieval and recommendation

* Visual IR: beyond Google-like keyword search:
— See more relevant documents
— See relationships: topical, inter-document
— Whole content-based, not keyword-based
* Visual Recommendation: enables discovery
— Personalized based on user feedback, persistent
— Understand “why” due to visualized relationships
* Only possible due to new/fast ML algorithms



VisIRR

An interactive visual information retrieval and recommender
system for large-scale document data

) vizIR 200912041610
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Visualization Example of Queried Set
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Recommendation Example

Preference-assigned item as ‘highly like’ :
‘Enhancing the visualization process with principal component

analysis to support the exploration of trends’
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 FODAVA meeting/lecture materials

« Data Sets
 DAVA Taxonomy and course material

« DAVA community events and meeting information
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About FODAVA

Enormous amounts of
data are being generated
every day in health care,
computational biology,
homeland security,
commerce, and many
other areas. Analyzing
these massive and
complex data sets is
essential to achieve new
discoveries, but
extremely difficult. An
emerging research field
known as data and visual

analytics is concerned with synthesizing information and deriving insight from
massive, dynamic, ambiguous and possibly conflicting digital data for increased

ember

FODAVA Website
http://fodava.gatech.edu

 Dissemination of FODAVA results to user communities
FODAVA Tech Reports/Software

Home  About Us

FODAVA Annual Review Meeting

lhc FODAVA Annual \‘lcctlng \Vl]l
nmmdlat\.l\ follow }41
DA\'A mml warks 0p al the

Posted: Septem! 2

understanding and effective decision making.

The Foundations on Data Analysis and Visual Analytics (FODAVA) research
initiative is dedicated to both defining the foundations of the data and visual
analytics fields and advancing the state-of-the-art. Established in 2008, the FODAVA

initiative is a collaborative effort funded j

intly by the National Science Foundation

(NSF) and the Department of Homeland Security (DHS).

The Georgia Institute of Technology, as the FODA!
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Our goal is to keep you informed on
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FODAVA Testbed Software

Many of the modern data sets such
as text and image data can be
represented in high-dimensional
vector spaces and have benefited
from computational methods that
utilize advanced techniques from
numerical linear algebra.
analytics approaches have
contributed greatly to data
understanding and analysis due to
their capability of leveraging
humans' ability for quick visual
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perception. However, visual analytics targeting large-scale data such as text and image data has been challenging due to
limited screen space in terms of both the numbers of data points and features to represent. Among various computational
technique supporting visual analytics, dimension reduction and clustering have played essential roles by reducing these
numbers in an intelligent way to visually manageable sizes. Given numerous dimension reduction and clustering techniques
available, however, decision on choice of algorithms and their parameters becomes difficult.

The FODAVA testbed system is an interactive visual testbed system for dimension reduction and clustering in a large-scale
high-dimensional data analysis. The testbed system enables users to apply various dimension reduction and clustering
methods with different settings, visually compare the results from different algorithmic methods to obtain rich knowledge
for the data and tasks at hand, and eventually choose the most appropriate path for a collection of algorithms and

parameters.

The testbed can load image, raw text, and vector-encoded data types. It offers 4 different clustering and 17 different
dimension reduction methods. Furthermore, the FODAVA testbed system is implemented in a flexible and modular way so




Concluding Remarks

« Data and Visual Analytics is especially important
for data understanding and question generation

* For Big data analytics, more integrated research
that tie automated algorithms and interactive
visualization needed

e Qur Contributions:

— Foundational algorithms for visual representations of
high dimensional, large scale, heterogeneous data

— Fast algorithms for real time interaction
— Development of VA testbed and other VA systems

Thank you!



