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Promise of topological data analysis: extract the structure 
from the data. 

In: point clouds 

Out: hidden structure



Underlying structure: 
manifolds?
stratified sets?

Two ways to look at them: Poincare's and Riemann:

Correspondingly, there are two approaches in dimensionality 
reduction:

• Poincare view - use ambient coordinates - PCA, Kernel 
PCA,...

• Riemann view - only intrinsic proximity makes sense - 
IsoMap, EigenMap,...



Topological Data Analysis aims at recovery of the most stable 
invariants of the data.

In particular, complete scale invariance is sought

This is both a curse and a blessing:

● very susceptible to noise
● only vague notion of proximity matters



Invariants of topological spaces: two spaces are the same if they 
are

homeomorphic?

diffeomorphic?

homotopic?



Invariants of topological spaces:

Dimension? 

Homotopy groups?

Homology and cohomology



Homology and cohomology

come in different flavors and colors

singular, de Rham, simplicial

Simplicial - easiest to deal with. Works well with meshes...



Algebraic formalism includes chains, cycles and boundaries, and 
the idiosyncratic relation

In essence, linear algebra encoding combinatorics of adjacencies.



Homology groups depend on the coefficient ring: what are the 
entries of the boundary matrix.

Sometimes there is torsion:

 

Working over a field – ranks of the homology groups are called 
Betti numbers: numeric invariants of a topological space 

 



Morse theory – an important tool to generate the cellular partition 
of the underlying manifold, and estimate the Betti numbers



What happens when one adds a simplex of dimension d: either a 
cycle in dimension d-1 disappears, or a cycle of dimension d 
appears.

This implies existence of an aggregate invariant, the Euler 
characteristic.



Back to data: given a point cloud, how to arrive at a topological space? 
Taking into account desirable scale?

Old idea: alpha-shapes (Robbins, Edelsbrunner...)

Place a ball around each point 
in the dataset and construct the  
Čech complex: glue in a simplex 
 for any non-empty intersection 
of the balls.

Nerve Theorem: If all 
intersections are contractible, 
the union of balls is homotopy 
equivalent to the Čech complex.



Noise is a problem, however: how to get rid of the small features?
Answer: increase the scale.
and again
and again
Until the features disappear altogether

Persistence is a way to address the onslaught of irrelevant features



Tidal traces to be ignored: only the islands survive.



Persistence homology 

Start with a filtration, and record when a cycle appears, and when 
it dies.



Encoding: either barcodes, or 
persistence diagram



Important result: stability 
theorem – small perturbations 
of the filtration change the 
persistence diagram little



Important tool: Morse theory



Some examples

Mumford dataset and the Klein bottle



Krioukov et al. Hyperbolic mapping
of complex networks



Simple test: what is the dimension of the 
internet?

How we find the dimension knowing a 
sample from a manifold?



Testing on a special 
(stratified) set



Testing on a special 
(stratified) set



Autonomous Systems 
(“Internet”)



Stochastic Topology: dealing with the 
baseline case 

Niyogi, Smale, Weinberger: 
Cech complex for small enough 
r and dense enough sample 
with has the homotopy type of 
the underlying manifold



Big Picture: from dust to foam to monolith  



Big Picture: timescale 



Big Picture: foam phase



Foam phase: oscillation of Euler characteristic

Euler characteristic in dim=7



Foam phase: concentrations of Betti numbers



Life in the ambient space: crackle 
phenomenon

If the noise is Gaussian, the 
balls form a solid ball. In 
exponential and subexponential 
cases, the homologies  form in 
layers.



Plenty of further models and questions in 
stochastic topology

Persistence diagrams for 
Brownian bridge



Plenty of further models and questions in 
stochastic topology

Topology of the level sets of random functions

Random simplicial complexes

Random configuration spaces

...




