Channel Capacity under Sub-Nyquist Nonuniform Sampling

Yuxin Chen Yonina C. Eldar Andrea J. Goldsmith
Department of Electrical Engineering, Stanford University

Background

• Information Theory Meets Sampling Theory

 ![Diagram of information theory and sampling theory](image)

 - How to jointly optimize the input distribution and sampling methods?

 • What is Sampled Channel Capacity [ChenEldarGoldsmith'2011]
 – For a given sampling system:
 \[x(t) \xrightarrow{H(t)} \hat{y}(t) \xrightarrow{\text{Sampler}} y[n] \]
 – For a large class of sampling systems
 \[x(t) \xrightarrow{\text{Sampler}} \hat{y}(t) \]
 Joint Optimization (Input and Sampling Methods)

Motivation

• Consider a bank of filters each followed by a uniform sampler...

![Diagram of a bank of filters and uniform samplers](image)

 – The sampled capacity is nonmonotonic in the sampling rate

Questions

• Will more general nonuniform sampling methods improve capacity?
• Which sampling systems can maximize capacity for a given sampling rate?
• What is the gap between sub-Nyquist sampled capacity and analog capacity?

Problem Formulation

• Sampling Rate
 - Beurling Density: \(f_s = \lim_{T \to \infty} \inf_t T \left[N / (t_n f_s + T) \right] \)

 ![Diagram of sampling rate](image)

 - Time-preserving Preprocessing System: A system that preserves the time scales
 – Counterexample: \(T(x(t)) = x(2t) \)

 • Sampled Channel Capacity (Perfect Channel State Information at Both Sides)
 – For a given system \(P \):
 \[C^P(f_s) = \lim_{T \to \infty} \inf_{t \in B_0} \sup_{\mu(B_0) = f_s} \frac{1}{T} \int \left[x([-T,T], \{\hat{y}(t)\}_{[-T,T]}) \right] \]
 – For the class of time-preserving systems: \(C(f_s) = \lim \sup_{T} C^P(f_s) \)

Converse: (Main Result)

• Theorem 1. Consider any time-preserving sampling system with rate \(f_s \).
 Suppose that there exists a frequency set \(B_{\text{lin}} \) that satisfies \(\mu(B_{\text{lin}}) = f_s \) and
 \[\int_{f \in B_{\text{lin}}} |H(f)|^2 \omega_0(f) \]
 \[\cdot \sup_{B \in \mu(B) = f_s} \int_{f \in B} |H(f)|^2 \omega_0(f) \]
 Then the sampled channel capacity can be upper bounded by
 \[C_s(f_s, P) = \int_{f \in B_{\text{lin}}} \frac{1}{2} \log \left(\frac{|H(f)|^2 \omega_0(f)}{S_0(f)} \right) df, \]

Achievability

• The upper bound in Theorem 1 can be achieved by sampling via a filter bank:

 ![Diagram of a filter bank](image)

 or be approached by sampling via a single branch of modulation and filtering:

Implications

• The Optimal Sampling Method:
 – extracts out a frequency set with the highest SNR
 – suppresses aliasing
 – results in a capacity monotonic in the sampling rate
 – robust to mild permutation of the sampling grid

• Irregular nonuniform sampling grid does not improve capacity.

• When the sampling rate is increased, the adjustment of the sampling hardware for filter-bank sampling is incremental.

The Way Ahead

• If the CSI is not perfectly known or if the channel state can be varying:
 – Alias-suppressing sampling is not necessarily optimal.
 – May need to scramble spectral contents.
 – May need different objective metrics (e.g. minimaxity).

• Decoding-constrained information theory:
 – Sampling systems can be viewed as part of the decoding method.
 – How to find the capacity-achieving input and decoding strategy if the decoding strategy needs to be picked from a given set (possibly infinitely many choices)