Channel Capacity under Sub-Nyquist Nonuniform Sampling

Yuxin Chen

Yonina C. Eldar

Background

e Information Theory Meets Sampling Theory
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— How to jointly optimize the input distribution and sampling methods?

e What is Sampled Channel Capacity [ChenEldarGoldsmith’2011]
— For a given sampling system:
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( of Input and Sampling Methods!)

Questions

e Will more general nonuniform sampling methods improve capacity?
e Which sampling systems can maximize capacity for a given sampling rate?
e What is the gap between sub-Nyquist sampled capacity and analog capacity?

Motivation

e Consider a bank of filters each followed by a uniform sampler...
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— The sampled capacity is nonmonotonic in the sampling rate

Problem Formulation
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— Beurling Density: fs = limp_, o infy, A0 T

— Time-preserving Preprocessing System: A system that preserves the time

scales
— Counterexample: T (z(t)) = x(2t)

¢ Sampled Channel Capacity (Perfect Channel State Information at
Both Sides)

— For a given system P:
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— For the class of time-preserving systems: C'(fs) = limsupp Cp(fs)
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Achievability

e The upper bound in Theorem 1 can be achieved by sampling via a filter bank:
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or be approached by sampling via a single branch of modulation and filtering:
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Converse: (Main Result)

e Theorem 1. Consider any time-preserving sampling system with rate fs.
Suppose that there exists a frequency set By, that satisfies u (By) = fs and
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Then the sampled channel capacity can be upper bounded by
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Implications

e The Optimal Sampling Method:
— extracts out a frequency set with the highest SNR
— suppresses aliasing
— results in a capacity monotonic in the sampling rate
e lrregular nonuniform sampling grid does not improve capacity.
— robust to mild permutation of the sampling grid

e When the sampling rate is increased, the adjustment of the sam-
pling hardware for lter-bank sampling is incremental.

The Way Ahead

o If the CSI is not perfectly known or if the channel state can be
varying:

— Alias-suppressing sampling is not necessarily optimal.

— May need to scramble spectral contents.

— May need different objective metrics (e.g. minimaxity).

e Decoding-constrained information theory:

— Sampling systems can be viewed as part of the decoding method.

— How to find the capacity-achieving input and decoding strategy if the de-
coding strategy needs to be picked from a given set (possibly infinitely many
choices)



