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subgraph under some mapping of the 
proteins between the two species) or 
inexact, allowing unmatched nodes 
on either subnetwork. This problem 
was first studied by Kelley et al.17 in the 
context of local network alignment; 
its later development accompanied 
the growth in the number of mapped 
organ isms.5,7,9,33 The third problem 
that has been considered is global net-
work alignment (Figure 1c), where one 
wishes to align whole networks, one 
against the other.4,34 In its simplest 
form, the problem calls for identifying 
a 1-1 mapping between the proteins 
of two species so as to optimize some 
conservation criterion, such as the 
number of conserved interactions be-
tween the two networks.

All these problems are NP-hard as 
they generalize graph and subgraph 
isomorphism problems. However, 
heuristic, parameterized, and ILP ap-
proaches for solving them have worked 
remarkably well in practice. Here, we 
review these approaches and demon-
strate their good performance in prac-
tice both in terms of solution quality 
and running time.

Heuristic Approaches
As in other applied fields, many prob-
lems in network biology are amenable 
to heuristic approaches that perform 
well in practice. Here, we highlight two 
such methods: a local search heuristic 
for local network alignment and an 
eigenvector-based heuristic for global 
network alignment.

NetworkBLAST32 is an algorithm 
for local network alignment that aims 
to identify significant subnetwork 
matches across two or more networks. 
It searches for conserved paths and 
conserved dense clusters of interac-
tions; we focus on the latter in our de-
scription. To facilitate the detection 
of conserved subnetworks, Network-
BLAST first forms a network alignment 
graph,17,23 in which nodes correspond 
to pairs of sequence-similar proteins, 
one from each species, and edges cor-
respond to conserved interactions (see 
Figure 2). The definition of the latter is 
flexible and allows, for instance, a di-
rect interaction between the proteins of 
one species versus an indirect interac-
tion (via a common network neighbor) 
in the other species. Any subnetwork 
of the alignment graph naturally corre-

Figure 2. The NetworkBLAST local network alignment algorithm. Given two input 
networks, a network alignment graph is constructed. Nodes in this graph correspond 
to pairs of sequence-similar proteins, one from each species, and edges correspond to 
conserved interactions. A search algorithm identifies highly similar subnetworks that 
follow a prespecified interaction pattern. Adapted from Sharan and Ideker.30

Figure 3. Performance comparison of computational approaches. 

(a) An evaluation of the quality 
of NetworkBLAST’s output 
clusters.  NetworkBLAST was 
applied to a yeast network from 
Yu et al.39 For every protein that 
served as a seed for an output 
cluster, the weight of this cluster 
was compared to the optimal 
weight of a cluster containing 
this protein, as computed using 
an ILP approach. The plot shows 
the % of protein seeds (y-axis) 
as a function of the deviation 
of the resulting clusters from 
the optimal attainable weight 
(x-axis). 

(b) A comparison of the 
running times of the dynamic 
programming (DP) and ILP 
approaches employed by 
Torque.7 The % of protein 
complexes (queries, y-axis) 
that were completed in a given 
time (x-axis) is plotted for 
the two algorithms. The shift 
to the left of the ILP curve 
(red) compared with that of 
the dynamic programming 
curve (blue) indicates the ILP 
formulation tends to be faster 
than the dynamic  programming 
implementation.

(a)

(b)

From Sharan and Ideker, Modeling cellular machinery through biological 
network comparison. Nat. Biotechnol. 24, 4 (Apr. 2006), 427–433. 
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LCSH/Wikipedia: Simple alignment fails
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A L B
A LCSH 297,266 vertices, 248,230 edges
B Wikipedia 205,948 vertices, 382,353 edges
L links 4,971,629 edges

MAX-WEIGHT BIPARTITE MATCHING
Overlap 2,346
Weight 60,120 (106,294)

Using structure should do better!
Note Links generated by a text search Lucene and weighted with Soft TF/IDF scoring
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Sometimes small data 
becomes big …
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Table 6.4
Matrix-vector products required for BiCG-STAB on in-2004, including preconditioning and

residual computations, to converge on the system (I−αP̄ ) with preconditioner
∑m

k=0(βP )k. A dash
indicates that the method made progress but did not converge to a tolerance of (

√
1− α)10−7 in

the maximum number of iterations required for the power method (100 for α = 0.85, ≈ 1500 for
α = 0.99, and ≈ 15000 for α = 0.999), and an × indicates that the method diverged or broke down.
When m = 0, there is no preconditioning and the results are independent of β.

α
0.85 0.99 0.999

β β β
m 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85

0 102 102 102 102 × × × × × × × ×
2 128 88 76 76 1140 672 508 500 × 6276 3972 2772
4 186 120 84 78 1584 786 438 414 × 5178 2358 2112
7 — 207 108 72 2565 1053 621 441 × 9567 2709 1449
25 — — — 81 — — 1809 1026 — 20385 7911 2754

exist. This objective alone is NP-hard. Often there are weights for possible matches
(e.g., Vji for i in A and j in B) that should bias the results towards these matchings,
and hence the objective also includes a term to maximize these weights.

Let P and Q be the uniform random-walk transition matrices for A and B, re-
spectively. Also, let the weights in V be normalized so that eTV e = 1 and Vij ≥ 0.
IsoRank uses the PageRank vector

x = α(P ⊗Q)x+ (1− α)v,

where the teleportation vector v = vec(V ) encodes the weights and α indicates how
much emphasis to place on matches using the weights’ information. Thus the IsoRank
algorithm is a case when v is not uniform, and α has a more concrete meaning. For
a protein-matching problem, it is observed experimentally in [39] that values of α
between 0.7 and 0.95 yield good results.

We look at a case when A is the 2-core of the undirected graph of subject headings
from the Library of Congress [41] (abbreviated LCSH-2) and B is the 3-core of the
undirected Wikipedia category structure [44] (abbreviated WC-3). One of the authors
previously used these datasets in analyzing the actual matches in a slightly different
setting [3]. The size of these datasets is reported in Table 6.5. For this application,
the weights come from a text-matching procedure on the labels of the two graphs.

Table 6.5
The size of non-Web datasets. The product graph is never formed explicitly.

Dataset Size Nonzeros

LCSH-2 59,849 227,464
WC-3 70,509 403,960

Product graph 4,219,893,141 91,886,357,440

In this experiment, we do not investigate all the issues involved in using a heuristic
to an NP-hard problem and focus on the performance of the inner-outer algorithm in
a non-Web ranking context. Without any parameter optimization (i.e., using β = 0.5
and η = 10−2), the inner-outer scheme shows a significant performance advantage, as
demonstrated in Table 6.6. 5


… Ananth has some better techniques to work with these large problems …




Network alignment"
What is the best way of matching "
graph A to B using only edges in L?
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Network alignment"
Matching? 1-1 relationship"
Best? highest weight and overlap
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objective = α matching + βoverlap
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•  Computer Vision

•  Ontology matching

•  Database matching

•  Bioinformatics


8


Network alignment"
… is NP-hard"
… has no approximation algorithm




Network alignment"
via mathematical programming




Find a 1-1 matching between vertices 
with as many overlaps as possible.
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If A is the node-edge incidence matrix 
for L, then x is a 1-1 matching
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Find a 1-1 matching between vertices 
with as many overlaps as possible.
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Let Sij = 1 when xi and xj overlap, then 
xTSx is twice the overlapped count.
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Our contributions

A new belief propagation method (Bayati et al. 2009, 2013)"
Outperformed state-of-the-art PageRank and optimization-
based heuristic methods



High performance C++ implementations (Khan et al. 2012)"
40 times faster (C++ ~ 3, complexity ~ 2, threading ~ 8)"
5 million edge alignments ~ 10 sec"


www.cs.purdue.edu/~dgleich/codes/netalignmc 
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Each iteration involves

Matrix-vector-ish computations 
with a sparse matrix, e.g. sparse 
matrix vector products in a semi-
ring, dot-products, axpy, etc. 

Bipartite max-weight matching 
using a different weight vector at 
each iteration

"
No “convergence” "
100-1000 iterations


Let x[i] be the score for 
each pair-wise match in L 

 

for i=1 to ... 

  update x[i] to y[i] 

  compute a  
    max-weight match 
    with y 

  update y[i] to x[i] 
    (using match in MR) 
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Open question 1!


Any sort of property of "
these methods beyond ... 

(i) Principled derivation and "
(ii) “David and Ananth say they work”?
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Belief propagation: Our algorithm

Summary

… Construct a probability
model where the most
likely state is the solution!

… Locally update information
… Like a generalized dynamic
program

… It works

… Most likely, it won’t
converge

History

… BP used for computing
marginal probabilities and
maximum aposterori
probability

… Wildly successful at solving
satisfiability problems

… Convergent algorithm for
max-weight matching

Bayati et al. 2005;



Belief propagation for 
network alignment
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NetAlign factor graph: Loopy BP
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Note It’s pretty hairy to put all the stuff I should put here on a single slide. Most of it is in the paper.
The rest is just “turning the crank” with standard tricks in BP algorithms.

Network Alignment :13

The neighbor operation used to define the left-hand vector x@fi is implicitly defined by
the set of variables used on the right-hand side of the equation. In words, the function
node fi (gi0) enforces the matching constraint at i (i0)
Another type of function nodes check the validity of squares. For each square ii

0 ⇤ jj

0

define a function node hii0jj0 : {0, 1}|EL|+|S| ! R:

hii0jj0
�
x@hii0jj0

�
=

(
1 xii0jj0 = xii0xjj0

0 otherwise
for all (ii0, jj0) 2 VS .

In other words, hii0jj0 guarantees that xii0jj0 = 1 if and only if xii0 = xjj0 = 1.

The edges of the factor graph are simply connecting each function node to the variable
nodes it acts on. For example each fi is connected to all variable nodes ii0 2 EL and each
hii0jj0 is connected to ii

0, jj0 and ii

0
jj

0 in EL [ VS . Therefore the factor graph is bipartite.
Figure 3 shows an example of a graph pair A,B and their factor-graph representation as

described above.
Now define the following probability distribution

p(xL,xS) =
1

Z

2

4
nY

i=1

fi(x@fi)
mY

j=1

gj(x@gj )
Y

ijrs2VS

hijrs(x@hijrs)

3

5
e

↵wT
xL+

�
2 1T

|S|xS (4)

where Z is just a normalization term to make p(xL,xS) a probability distribution. In
particular,

Z ⌘
X

(xL,xS)2{0,1}|EL|+|S|

2

4
nY

i=1

fi(x@fi)
mY

j=1

gj(x@gj )
Y

ijrs2VS

hijrs(x@hijrs)

3

5
e

↵wT
xL+

�
2 1T

|S|xS
.

Note that, there is a 1-1 correspondence between the feasible solutions of NAQP and support
of the probability distribution (4). The following lemma formalizes this observation.

Lemma 5.1. For any (xL,xS) 2 {0, 1}|EL|+|VS |
with non-zero probability, the vector

xL satisfies the constraints of the integer program NAQP. Conversely, any feasible solution

xL to NAQP has a unique counterpart (xL,xS) with non-zero probability p(xL,xS) =

e

↵wT
x+(�/2)1T

|S|xS
.

Proof. Any (xL,xS) 2 {0, 1}|EL|+|VS | with non-zero probability should satisfy the
conditions dictated by function nodes f, g, h which translates to xL,xS being a feasible
solution to NAQP. Conversely, for any feasible solution to NAQP the values of function
nodes f, g, h are equal to 1 and hence the probability is non-zero.

Moreover, any pair with maximum probability is an optimum solution to NAQP.

Lemma 5.2. The vector (x⇤
L,x

⇤
S) is equal to argmax

xL,xS p(xL,xS) if and only if x

⇤
L

is the optimum solution to NAQP and x

⇤
S is the vector of squares generated by it.

Proof. Proof immediately follows from Lemma 5.1.

Using Lemma 5.2, it is known that a variant of BP algorithm (max-product or min-sum)
can be used to find an approximate solution to NAQP [Mez 2009]. In this paper we use
the notion BP to refer to this variant.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article , Publication date: January YYYY.
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variables functions
… max-product of function nodes
… variables have state 0 or 1
… function nodes compute a
product

… messages are the belief (local
objective) about a node for a
state

j

i
M�!j{�� = s} =
Y

j02{N(�)\j}
Mj0!�{�� = s}

variable � tells function j what it thinks
about being in state s. This is just the
product of what all the other functions tell
� about being in state s.

j

i Mj!�{�� = s} =m�xim�m
y:all possible choices
for variables �02N(j)

2
64ƒj(y)
Y

�02{N(j)\�}
M�0!j{�0� = y0�}

3
75

function j tells variable � what it thinks
about being in state s. This means that we
have to locally maxamize ƒj among all
possible choices. Note y� = s always (too
cumbersome to include in notation.)
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variables functions
… max-product of function nodes
… variables have state 0 or 1
… function nodes compute a
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Belief propagation for 
network alignment

For t � 1, the messages in iteration t are obtained from the messages in

iteration t � 1 recursively. In particular for all ii 0 2 EL

m(t)
ii0!fi = ↵wii0 �

✓
max

k 6=i

h
m(t�1)

ki0!gi0

i◆+

+

X

ii0 jj02VS

min

✓
�

2

, max(0,

�

2

+ m(t�1)

jj0!hii0 jj0
)

◆
. (1)

The update rule for m(t)
ii0!gi0

is similar, and

m(t)
ii0!hii0 jj0

= ↵wii0 �
✓

max

k 6=i

h
m(t�1)

ki0!gi0

i◆+

�
✓

max

k 0 6=i0

h
m(t�1)

ik 0!fi

i◆+

+

X

kk0 6=jj0
ii0kk 02VS

min

✓
�

2

, max(0, m(t�1)

kk 0!hii0kk0
+

�

2

)

◆
. (2)



Synthetic evaluation of 
network alignment
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Synthetic experiments: BP does well!
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Open question 2!


When could we hope to solve such 
synthetic problems in asymptotic 
regimes?
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Does it work?
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Network Alignment :25

Table IV. The alignment results for LCSH and Rameau. The first set of results shows the statistics of the known
alignment and the results from the max-weight matching algorithm. Next we show results from our algorithms for
three objective parameters. The columns are: objective parameters, algorithms, matching weight, matching edge
overlap, time, total correct, recall, precision, and matching triangle overlap.

Obj. Alg. Weight Overlap Time (s) Correct Rec. Prec. Triangles

Sol. 36332.42 39847 — 57645 100% 100% 2073
MWM 93279.0 16990 29.6 29098 50.5% 23.3% 350

↵ = 1,� = 1 MP 84622.0 46400 23522.0 32585 56.5% 27.6% 1515
MP++ 85810.1 46942 27115.6 32857 57.0% 27.4% 1548
MR 87588.6 48367 33366.9 33225 57.6% 27.0% 1617

↵ = 1,� = 2 MP 81752.6 46569 23427.1 31724 55.0% 27.6% 1483
MP++ 84615.7 46656 26673.1 31952 55.4% 26.7% 1531
MR 85438.4 48934 56961.6 32303 56.0% 26.3% 1604

↵ = 0,� = 1 MP 60617.9 45247 14284.8 24794 43.0% 23.2% 1467
MP++ 60502.8 41592 13979.5 24498 42.5% 23.0% 1484
MR 65994.2 46163 10384.4 25455 44.2% 21.5% 1602

protein-protein interaction networks and ontologies. In the future, we envision applications
of these techniques in mapping large social network structure.
Of course, finding the best alignment between two networks is NP-hard. Thus far, we

are limited to attacking the problem heuristically as there is no known approximation al-
gorithm. Many di↵erent heuristics for the problem fit nicely within our quadratic program-
ming framework for the problem. We studied several existing algorithms this framework
and compared their performance on both synthetic and real data.
We find that the NetAlignMR from Klau [2009] produces the best results when a sparse

set of potential matches between two graphs exist. Our two new message-passing algorithms,
NetAlignMP and NetAlignMP++, were designed based on belief propagation ideas for solv-
ing the integer optimization problem directly. They are mildly faster than NetAlignMR
(roughly 1.3% in our experiments) and their results nearly tie with NetAlignMR. Addition-
ally, our algorithms produce better solutions when the set of potential matches is dense.
There are a number of avenues for future work we plan to investigate. First, because

our algorithms use message passing, they should allow simple parallel implementations,
including on MapReduce style architectures. Second, in each of the real data sets we used,
the nodes of the two graphs had an informative label, which helped us to apply preprocessing
to produce a sparse graph of potential matches between the two graphs. All of the previously
discussed algorithms utilize this fact, except for IsoRank. We also plan to investigate aligning
graphs without these initial “hints.”
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Open question 3!


How can we evaluate alignments? "
What are possible null-models? 
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Matching results: A little too hot!
LCSH WC

Science fiction television series Science fiction television programs
Turing test Turing test

Machine learning Machine learning
Hot tubs Hot dog
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Tensor methods for network alignment

Network alignment is the problem of computing an approximate isomorphism between two net-
works. In collaboration with Mohsen Bayati, Amin Saberi, Ying Wang, and Margot Gerritsen,
the PI has developed a state of the art belief propagation method (Bayati et al., 2009).

FIGURE 6 – Previous work
from the PI tackled net-
work alignment with ma-
trix methods for edge
overlap:

i

j
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0
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OverlapOverlap

A L B

This proposal is for match-
ing triangles using tensor
methods:

j

i

k

j

0
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0

k

0

TriangleTriangle

A L B

If xi, xj , and xk are
indicators associated with
the edges (i, i0), (j, j0), and
(k, k0), then we want to
include the product xixjxk

in the objective, yielding a
tensor problem.

We propose to study tensor methods to perform network alignment
with triangle and other higher-order graph moment matching. Similar
ideas were proposed by Šváb (2007); Chertok and Keller (2010) also
proposed using triangles to aid in network alignment problems.
In Bayati et al. (2011), we found that triangles were a key missing
component in a network alignment problem with a known solution.
Given that preserving a triangle requires three edges between two
graphs, this yields a tensor problem:

maximize
X

i2L

wixi +
X

i2L

X

j2L

xixjSi,j +
X

i2L

X

j2L

X

k2L

xixjxkTi,j,k

| {z }
triangle overlap term

subject to x is a matching.

Here, Ti,j,k = 1 when the edges corresponding to i, j, and k in
L results in a triangle in the induced matching. Maximizing this
objective is an intractable problem. We plan to investigate a heuris-
tic based on a rank-1 approximation of the tensor T and using
a maximum-weight matching based rounding. Similar heuristics
have been useful in other matrix-based network alignment algo-
rithms (Singh et al., 2007; Bayati et al., 2009). The work involves
enhancing the Symmetric-Shifted-Higher-Order Power Method due to
Kolda and Mayo (2011) to incredibly large and sparse tensors . On this
aspect, we plan to collaborate with Tamara G. Kolda. In an initial
evaluation of this triangle matching on synthetic problems, using the
tensor rank-1 approximation alone produced results that identified
the correct solution whereas all matrix approaches could not.

vision for the future

All of these projects fit into the PI’s vision for modernizing the matrix-computation paradigm
to match the rapidly evolving space of network computations. This vision extends beyond
the scope of the current proposal. For example, the web is a huge network with over one
trillion unique URLs (Alpert and Hajaj, 2008), and search engines have indexed over 180
billion of them (Cuil, 2009). Yet, why do we need to compute with the entire network?
By way of analogy, note that we do not often solve partial di↵erential equations or model
macro-scale physics by explicitly simulating the motion or interaction of elementary particles.
We need something equivalent for the web and other large networks. Such investigations may
take many forms: network models, network geometry, or network model reduction. It is the
vision of the PI that the language, algebra, and methodology of matrix computations will
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Tensor methods for network alignment

Network alignment is the problem of computing an approximate isomorphism between two net-
works. In collaboration with Mohsen Bayati, Amin Saberi, Ying Wang, and Margot Gerritsen,
the PI has developed a state of the art belief propagation method (Bayati et al., 2009).

FIGURE 6 – Previous work
from the PI tackled net-
work alignment with ma-
trix methods for edge
overlap:
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in the objective, yielding a
tensor problem.

We propose to study tensor methods to perform network alignment
with triangle and other higher-order graph moment matching. Similar
ideas were proposed by Šváb (2007); Chertok and Keller (2010) also
proposed using triangles to aid in network alignment problems.
In Bayati et al. (2011), we found that triangles were a key missing
component in a network alignment problem with a known solution.
Given that preserving a triangle requires three edges between two
graphs, this yields a tensor problem:
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Here, Ti,j,k = 1 when the edges corresponding to i, j, and k in
L results in a triangle in the induced matching. Maximizing this
objective is an intractable problem. We plan to investigate a heuris-
tic based on a rank-1 approximation of the tensor T and using
a maximum-weight matching based rounding. Similar heuristics
have been useful in other matrix-based network alignment algo-
rithms (Singh et al., 2007; Bayati et al., 2009). The work involves
enhancing the Symmetric-Shifted-Higher-Order Power Method due to
Kolda and Mayo (2011) to incredibly large and sparse tensors . On this
aspect, we plan to collaborate with Tamara G. Kolda. In an initial
evaluation of this triangle matching on synthetic problems, using the
tensor rank-1 approximation alone produced results that identified
the correct solution whereas all matrix approaches could not.

vision for the future

All of these projects fit into the PI’s vision for modernizing the matrix-computation paradigm
to match the rapidly evolving space of network computations. This vision extends beyond
the scope of the current proposal. For example, the web is a huge network with over one
trillion unique URLs (Alpert and Hajaj, 2008), and search engines have indexed over 180
billion of them (Cuil, 2009). Yet, why do we need to compute with the entire network?
By way of analogy, note that we do not often solve partial di↵erential equations or model
macro-scale physics by explicitly simulating the motion or interaction of elementary particles.
We need something equivalent for the web and other large networks. Such investigations may
take many forms: network models, network geometry, or network model reduction. It is the
vision of the PI that the language, algebra, and methodology of matrix computations will
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Triangle alignment"
via mathematical programming




Find a 1-1 matching between vertices with 
as many overlaps and triangles as possible.
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Tensor methods for network alignment

Network alignment is the problem of computing an approximate isomorphism between two net-
works. In collaboration with Mohsen Bayati, Amin Saberi, Ying Wang, and Margot Gerritsen,
the PI has developed a state of the art belief propagation method (Bayati et al., 2009).

FIGURE 6 – Previous work
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(k, k0), then we want to
include the product xixjxk

in the objective, yielding a
tensor problem.

We propose to study tensor methods to perform network alignment
with triangle and other higher-order graph moment matching. Similar
ideas were proposed by Šváb (2007); Chertok and Keller (2010) also
proposed using triangles to aid in network alignment problems.
In Bayati et al. (2011), we found that triangles were a key missing
component in a network alignment problem with a known solution.
Given that preserving a triangle requires three edges between two
graphs, this yields a tensor problem:
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Here, Ti,j,k = 1 when the edges corresponding to i, j, and k in
L results in a triangle in the induced matching. Maximizing this
objective is an intractable problem. We plan to investigate a heuris-
tic based on a rank-1 approximation of the tensor T and using
a maximum-weight matching based rounding. Similar heuristics
have been useful in other matrix-based network alignment algo-
rithms (Singh et al., 2007; Bayati et al., 2009). The work involves
enhancing the Symmetric-Shifted-Higher-Order Power Method due to
Kolda and Mayo (2011) to incredibly large and sparse tensors . On this
aspect, we plan to collaborate with Tamara G. Kolda. In an initial
evaluation of this triangle matching on synthetic problems, using the
tensor rank-1 approximation alone produced results that identified
the correct solution whereas all matrix approaches could not.

vision for the future

All of these projects fit into the PI’s vision for modernizing the matrix-computation paradigm
to match the rapidly evolving space of network computations. This vision extends beyond
the scope of the current proposal. For example, the web is a huge network with over one
trillion unique URLs (Alpert and Hajaj, 2008), and search engines have indexed over 180
billion of them (Cuil, 2009). Yet, why do we need to compute with the entire network?
By way of analogy, note that we do not often solve partial di↵erential equations or model
macro-scale physics by explicitly simulating the motion or interaction of elementary particles.
We need something equivalent for the web and other large networks. Such investigations may
take many forms: network models, network geometry, or network model reduction. It is the
vision of the PI that the language, algebra, and methodology of matrix computations will
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Tensor methods for network alignment

Network alignment is the problem of computing an approximate isomorphism between two net-
works. In collaboration with Mohsen Bayati, Amin Saberi, Ying Wang, and Margot Gerritsen,
the PI has developed a state of the art belief propagation method (Bayati et al., 2009).
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We propose to study tensor methods to perform network alignment
with triangle and other higher-order graph moment matching. Similar
ideas were proposed by Šváb (2007); Chertok and Keller (2010) also
proposed using triangles to aid in network alignment problems.
In Bayati et al. (2011), we found that triangles were a key missing
component in a network alignment problem with a known solution.
Given that preserving a triangle requires three edges between two
graphs, this yields a tensor problem:
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Here, Ti,j,k = 1 when the edges corresponding to i, j, and k in
L results in a triangle in the induced matching. Maximizing this
objective is an intractable problem. We plan to investigate a heuris-
tic based on a rank-1 approximation of the tensor T and using
a maximum-weight matching based rounding. Similar heuristics
have been useful in other matrix-based network alignment algo-
rithms (Singh et al., 2007; Bayati et al., 2009). The work involves
enhancing the Symmetric-Shifted-Higher-Order Power Method due to
Kolda and Mayo (2011) to incredibly large and sparse tensors . On this
aspect, we plan to collaborate with Tamara G. Kolda. In an initial
evaluation of this triangle matching on synthetic problems, using the
tensor rank-1 approximation alone produced results that identified
the correct solution whereas all matrix approaches could not.

vision for the future

All of these projects fit into the PI’s vision for modernizing the matrix-computation paradigm
to match the rapidly evolving space of network computations. This vision extends beyond
the scope of the current proposal. For example, the web is a huge network with over one
trillion unique URLs (Alpert and Hajaj, 2008), and search engines have indexed over 180
billion of them (Cuil, 2009). Yet, why do we need to compute with the entire network?
By way of analogy, note that we do not often solve partial di↵erential equations or model
macro-scale physics by explicitly simulating the motion or interaction of elementary particles.
We need something equivalent for the web and other large networks. Such investigations may
take many forms: network models, network geometry, or network model reduction. It is the
vision of the PI that the language, algebra, and methodology of matrix computations will
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Human protein interaction networks 48,228 triangles

Yeast protein interaction networks  257,978 triangles 

The tensor T has ~100,000,000,000 nonzeros



We work with it implicitly


where 𝜌 ensures the 2-norm
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Synthetic evaluation of 
network alignment
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Synthetic experiments: BP does well!
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Open question 4!


When do we need triangles?
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