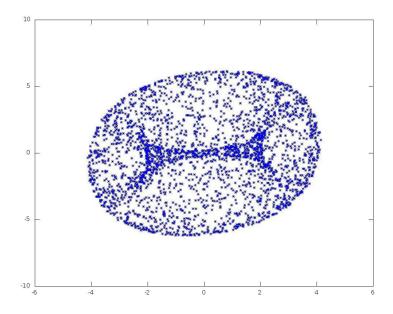
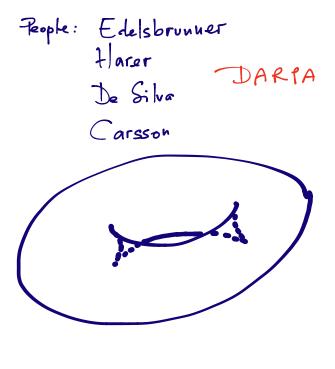
topological data analysis and stochastic topology

yuliy **baryshnikov** waikiki, march 2013 Promise of topological data analysis: extract the structure from the data.

In: point clouds

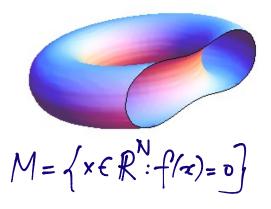
Out: hidden structure



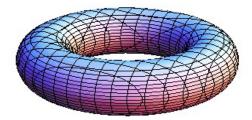


Underlying structure: manifolds? stratified sets?

Two ways to look at them: Poincare's and Riemann:



$$\mathcal{M} = \bigcup_{\mathcal{A}} \mathcal{M}_{\mathcal{A}}, \mathcal{Y}_{\mathcal{A}} : \mathcal{M}_{\mathcal{A}} \to \mathbb{R}^{n}$$



Correspondingly, there are two approaches in dimensionality reduction:

- Poincare view use ambient coordinates PCA, Kernel PCA,...
- Riemann view only intrinsic proximity makes sense -IsoMap, EigenMap,...

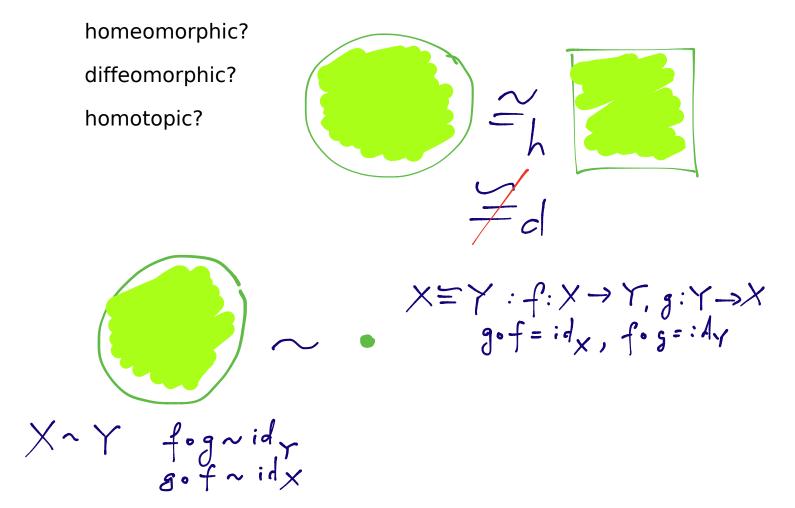
Topological Data Analysis aims at recovery of the most stable invariants of the data.

In particular, complete scale invariance is sought

This is both a curse and a blessing:

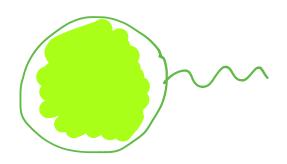
- very susceptible to noise
- only vague notion of proximity matters

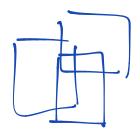
Invariants of topological spaces: two spaces are the same if they are



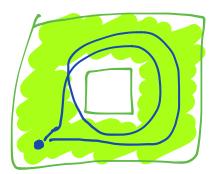
Invariants of topological spaces:

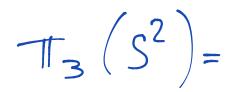
Dimension?





Homotopy groups?





Homology and cohomology

Homology and cohomology

come in different flavors and colors

singular, de Rham, simplicial

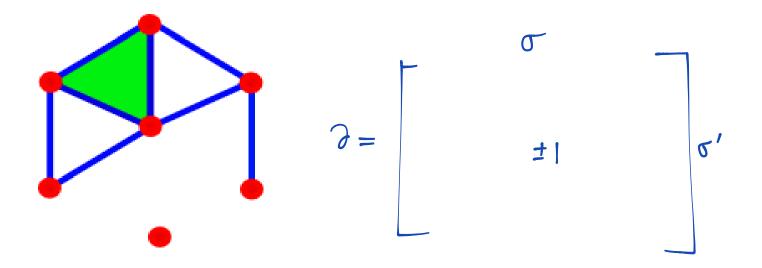
Simplicial - easiest to deal with. Works well with meshes...

 $+|_{p}(X,R)$ Cp = R<simplies of dim p> $\partial \sigma = \sum_{i} (-)^{i} \sigma_{i}$ Zp = Kerop Bp= In op-1 Hp=Zp/Bp

Algebraic formalism includes chains, cycles and boundaries, and the idiosyncratic relation

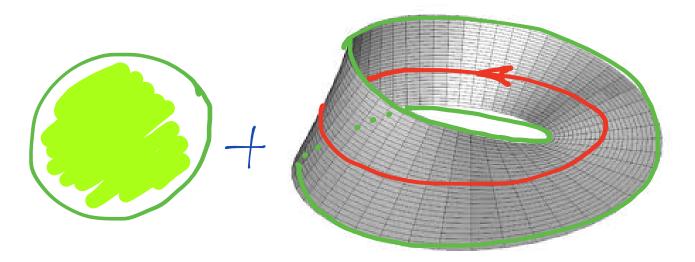
 $\partial^2 = 0$

In essence, linear algebra encoding combinatorics of adjacencies.



Homology groups depend on the coefficient ring: what are the entries of the boundary matrix.

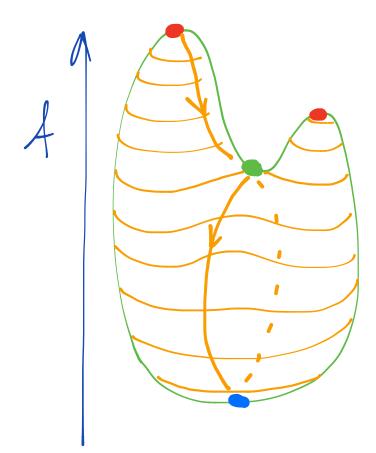
Sometimes there is torsion:



Working over a field – ranks of the homology groups are called Betti numbers: numeric invariants of a topological space

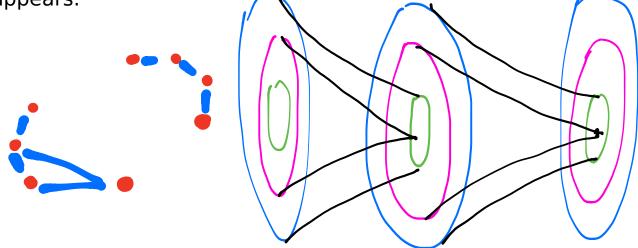
$$\beta_{p} = rk H_{p}(x, k)$$

Morse theory – an important tool to generate the cellular partition of the underlying manifold, and estimate the Betti numbers



 $\beta_{p} \leq \mu_{p}$ $\beta_{p} - \beta_{p-1} + \dots + \beta_{o} \leq \mu_{p} - \mu_{p-1} + \dots + \mu_{o}$

What happens when one adds a simplex of dimension d: either a cycle in dimension d-1 disappears, or a cycle of dimension d appears.

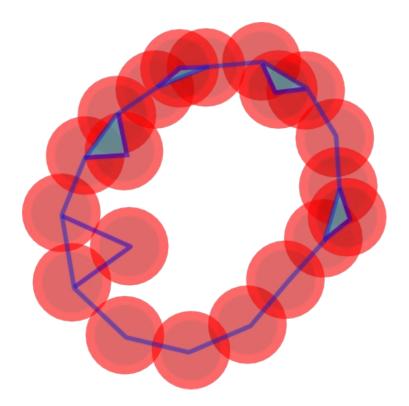


This implies existence of an aggregate invariant, the Euler characteristic.

$$\mathcal{J}(X) = \sum_{l} (-1)^{p} \beta_{p} = \sum_{\sigma} (-1)^{diw\sigma}$$

Back to data: given a point cloud, how to arrive at a topological space? Taking into account desirable scale?

Old idea: alpha-shapes (Robbins, Edelsbrunner...)



Place a ball around each point in the dataset and construct the *Čech complex*: glue in a simplex for any non-empty intersection of the balls.

Nerve Theorem: If all intersections are contractible, the union of balls is homotopy equivalent to the Čech complex.

Noise is a problem, however: how to get rid of the small features? Answer: increase the scale.

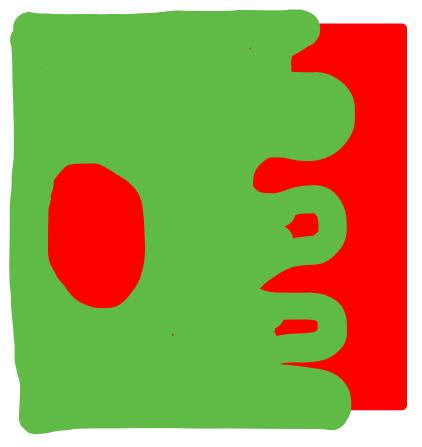
and again

and again

Until the features disappear altogether

Persistence is a way to address the onslaught of irrelevant features

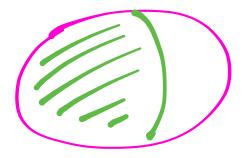
Tidal traces to be ignored: only the islands survive.



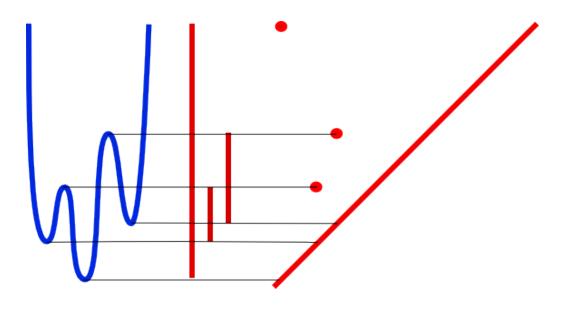
Persistence homology

Start with a filtration, and record when a cycle appears, and when it dies.

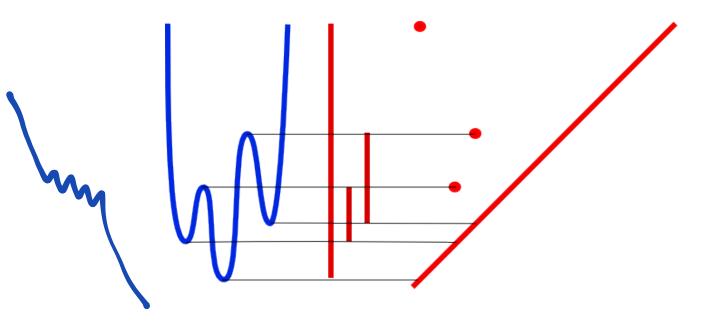
 $Z_{p}(K_{t}) \supset B_{p}(K_{t})$ $Z_{p}(K_{4+n}) > B_{p}(K_{4+n})$



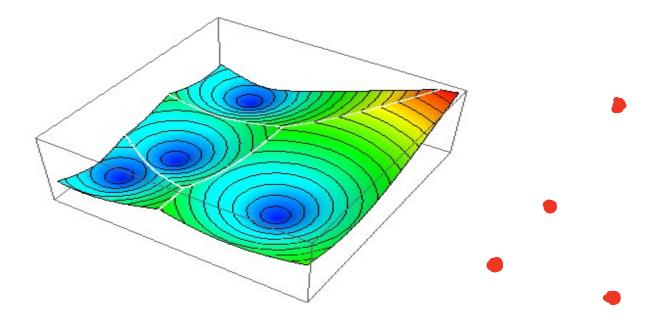
Encoding: either barcodes, or persistence diagram



Important result: stability theorem – small perturbations of the filtration change the persistence diagram little

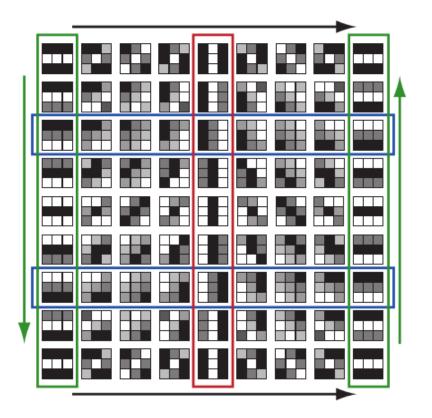


Important tool: Morse theory

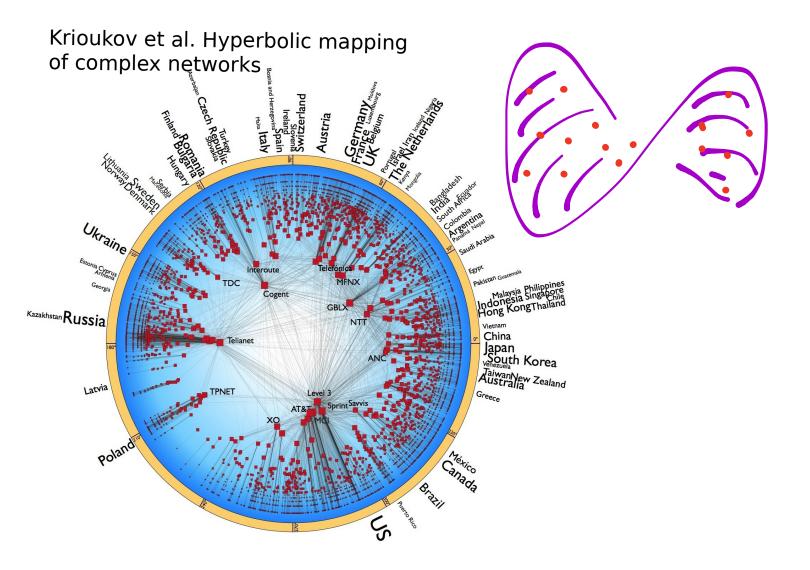


Some examples

Mumford dataset and the Klein bottle

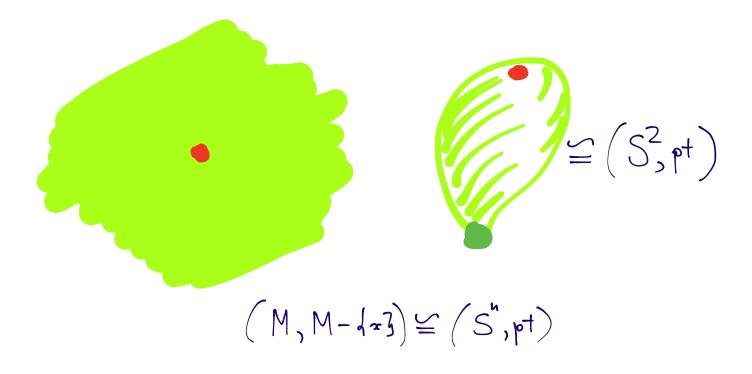


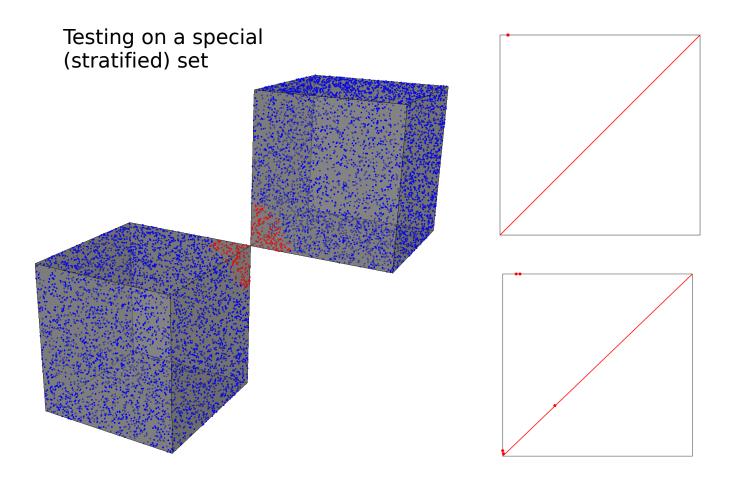


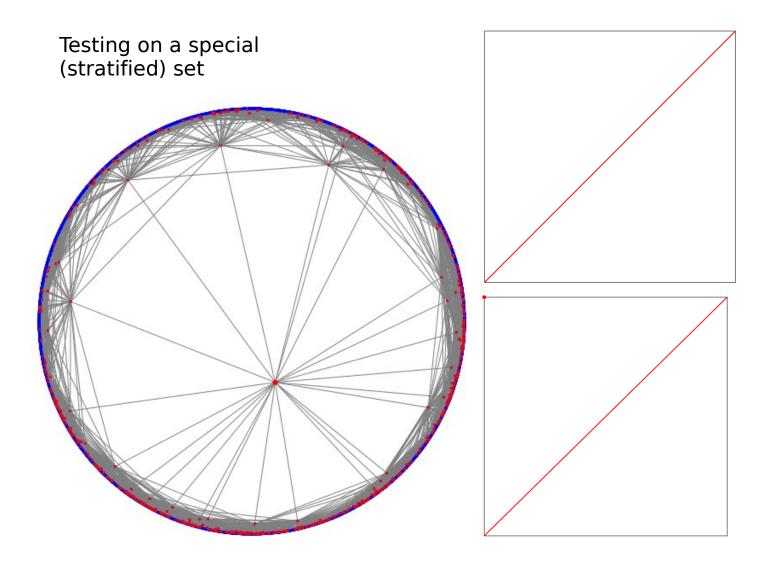


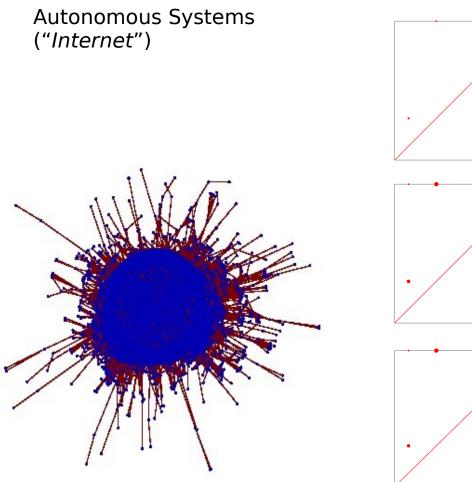
Simple test: what is the *dimension* of the internet?

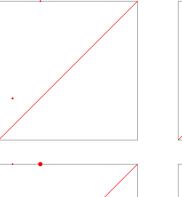
How we find the dimension knowing a sample from a manifold?

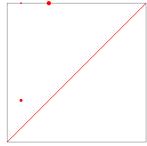


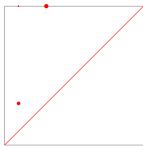


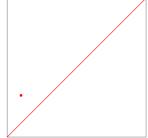


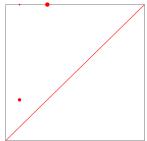


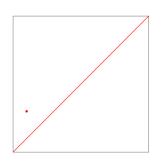




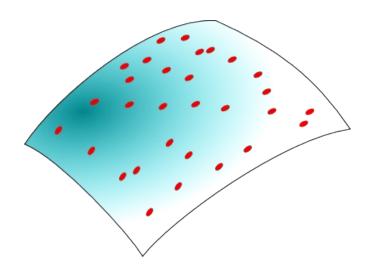






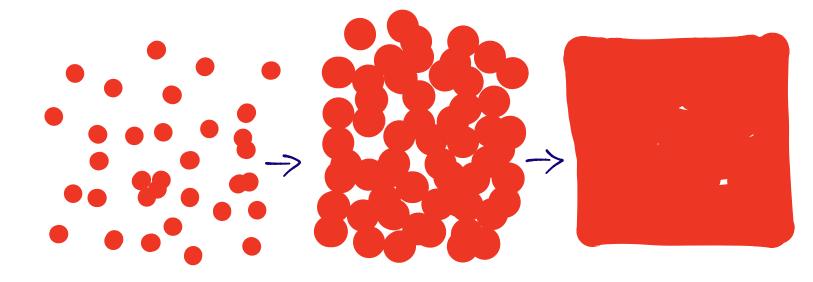


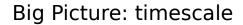
Stochastic Topology: dealing with the baseline case



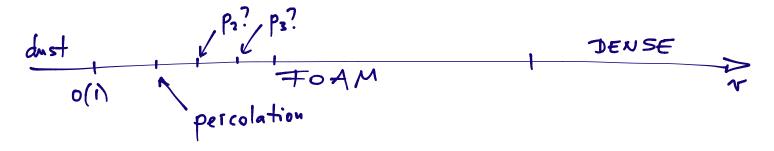
Niyogi, Smale, Weinberger: Cech complex for small enough *r* and dense enough sample with has the homotopy type of the underlying manifold

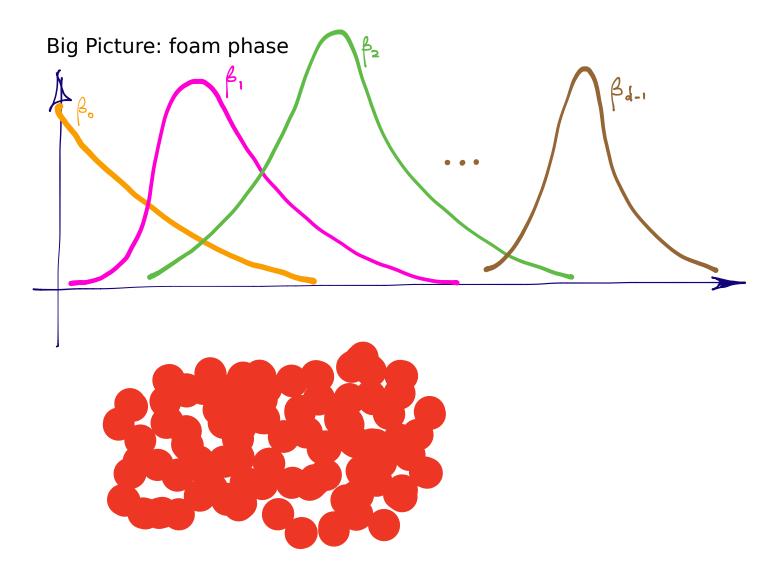
Big Picture: from dust to foam to monolith



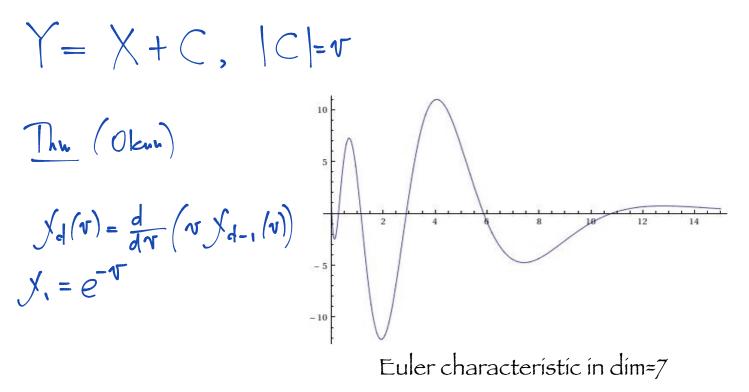








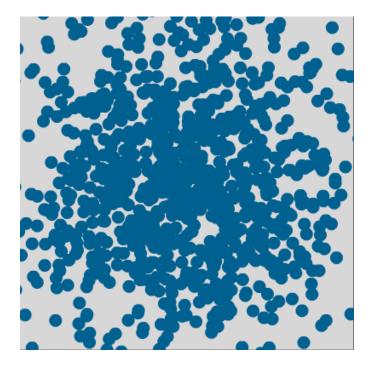
Foam phase: oscillation of Euler characteristic



Foam phase: concentrations of Betti numbers

 $X \subset \mathbb{R}^{d}$ - Poisson, p = 1 $B_{p}(v) := \lim_{\Omega \to \mathbb{R}^{d}} \frac{B_{p}(X_{v} \cap \Omega)}{|\Omega|}$ $X_{r} = X + B$, $|B| = \tau$ $M_{p}(v) = \lim_{Q \to v} \frac{\#(Cr(p) \cap \Omega)}{|Q|}$ Thu: M is concentrated around Np = Cy+p L width ~ Vd m

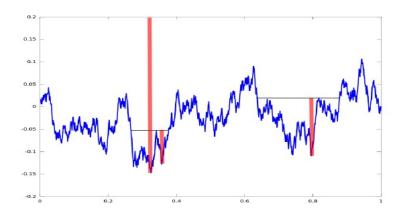
Life in the ambient space: crackle phenomenon

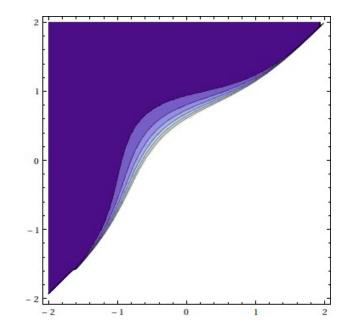


If the noise is Gaussian, the balls form a solid ball. In exponential and subexponential cases, the homologies form in layers. Plenty of *further models and questions* in stochastic topology

 $\#[x,y] \sim (y-x)' \int_{x}^{\infty} e^{-2\xi^{2}} d\xi$

Persistence diagrams for Brownian bridge





Plenty of *further models and questions* in stochastic topology

Topology of the level sets of random functions

Random simplicial complexes

Random configuration spaces

. . .

-							 												-
				-													_		
																	_		_
							 				_								