


BIG data??? MASSIVE data???? 

NYT, Feb 11, 2012: “The Age of Big Data”   
•  “What is Big Data? A meme and a marketing term, for sure, but also 
shorthand for advancing trends in technology that open the door to a new 
approach to understanding the world and making decisions. …” 

Why are big data big?  
•  Generate data at different places/times and different resolutions 

•  Factor of 10 more data is not just more data, but different data 



BIG data??? MASSIVE data???? 

MASSIVE data:  
•  Internet, Customer Transactions, Astronomy/HEP = “Petascale” 

•  One Petabyte = watching 20 years of movies (HD) = listening to 20,000 
years of MP3 (128 kbits/sec) = way too much to browse or comprehend 

massive data:  
•  105 people typed at 106 DNA SNPs; 106 or 109 node social network; etc. 

In either case, main issues:  
•  Memory management issues, e.g., push computation to the data  

•  Hard to answer even basic questions about what data “looks like” 



Algorithmic vs. Statistical Perspectives 

Computer Scientists  
•  Data: are a record of everything that happened.  
•  Goal: process the data to find interesting patterns and associations. 
•  Methodology: Develop approximation algorithms under different 
models of data access since the goal is typically computationally hard. 

Statisticians (and Natural Scientists, etc) 
•  Data: are a particular random instantiation of an underlying process 
describing unobserved patterns in the world. 
•  Goal: is to extract information about the world from noisy data. 
•  Methodology: Make inferences (perhaps about unseen events) by 
positing a model that describes the random variability of the data 
around the deterministic model.  

Lambert (2000); Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis”  (2010)   



Perspectives are NOT incompatible 

•  Statistical/probabilistic ideas are central to recent work on 
developing improved randomized algorithms for matrix problems. 

•  Intractable optimization problems on graphs/networks yield to 
approximation when assumptions are made about network 
participants. 

•  In boosting (a statistical technique that fits an additive model 
by minimizing an objective function with a method such as 
gradient descent), the computation parameter (i.e., the number 
of iterations) also serves as a regularization parameter. 



But they are VERY different paradigms 

Statistics, natural sciences, scientific computing, etc:  
•  Problems often involve computation, but the study of computation 
per se is secondary 
•  Only makes sense to develop algorithms for well-posed* problems 
•  First, write down a model, and think about computation later 

Computer science: 
•  Easier to study computation per se in discrete settings, e.g., 
Turing machines, logic, complexity classes  
•  Theory of algorithms divorces computation from data 
•  First, run a fast algorithm, and ask what it means later 

*Solution exists, is unique, and varies continuously with input data 



How do we view BIG data? 



In Two Parts 

Part One: Algorithmic and Statistical Perspectives on 
Large-scale Data Analysis: 
•  Describes these two approaches with two “anecdotes” from 
genetics and internet advertising applications 
•  Preprint: arXiv:1010.1609 (2010); In: Combinatorial Scientific 
Computing, pp. 427-469, edited by U. Naumann and O. Schenk, 2012 

Part Two: Approximate Computation and Implicit 
Regularization in Large-scale Data Analysis: 
•  Describes regularization, the concept at the heart of this 
difference, in traditional and novel contexts  
•  Preprint: arXiv:1203.0786 (2012);Proc. of the 2012 ACM 
Symposium on Principles of Database Systems, 143-154, 2012 
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Matrices and graphs in data analysis 
Graphs:  
•  model  information network with graph G = (V,E) -- vertices represent 
“entities” and edges represent  “interactions” between pairs of entities 

Matrices:  
•  model  data sets by a matrix -- since an m x n matrix A can encode 
information about m objects, each of which is described by n features 

Matrices and graphs represent a nice tradeoff between:  
•  descriptive flexibility 
•  algorithmic tractability 

But, the issues that arise are very different than in traditional linear 
algebra or graph theory AND the data place very different demands on 
hardware than in traditional database or supercomputer applications. 



Outline for Part One 
•  “Algorithmic” and “statistical” perspectives on data problems 

•  Genetics application  
 DNA SNP analysis --> choose columns from a matrix 

 PMJKPGKD, Genome Research ’07; PZBCRMD, PLOS Genetics ’07; Mahoney and 
Drineas, PNAS ’09; DMM, SIMAX ‘08; BMD, SODA ‘09 

•  Internet application 
 Community finding --> partitioning a graph 

 LLDM (WWW ‘08 & TR ‘08-IM‘09 & WWW ‘10) 

We will focus on what was going on “under the hood” in these two 
applications --- use statistical properties implicit in worst-case 
algorithms to make domain-specific claims! 



 SNPs are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 
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… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

 SNPs occur quite frequently within the genome and thus are effective genomic 
markers for the tracking of disease genes and population histories.  

DNA SNPs and human genetics 
•  Human genome ≈ 3 billion base pairs 

•  25,000 – 30,000 genes 

•  Functionality of 97% of the genome is unknown. 

•  Individual “polymorphic” variations at ≈ 1 b.p./thousand. 
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DNA SNPs and data analysis 
A common modus operandi  in applying NLA to data problems: 

•  Write the gene/SNP data as an m x n matrix A. 

•  Do SVD/PCA to get a small number of eigenvectors 

•  Either:  interpret the eigenvectors as meaningful i.t.o. underlying genes/SNPs 

 use a heuristic to get actual genes/SNPs from those eigenvectors 

Unfortunately, eigenvectors themselves are meaningless (recall reification in stats):   

•  “EigenSNPs” (being linear combinations of SNPs) can not be assayed … 

•  … nor can “eigengenes” from micro-arrays be isolated and purified … 

•  … nor do we really care about “eigenpatients” respond to treatment ... 



DNA SNPs and low-rank methods 

•  Common genetics task: find a small subset of informative actual SNPs  

 to cluster individuals depending on their ancestry 

 to determine predisposition to diseases  

•  Algorithmic question: Can we find the best k actual columns from a matrix? 

 Can we find actual SNPs that “capture” information in singular vectors? 

 Can we find actual SNPs that are maximally uncorrelated? 

•  Common formalization of “best” lead to intractable optimization problems. 

PMJKPGKD, Genome Research ’07 (data from K. Kidd, Yale University) 
PZBCRMD, PLOS Genetics ’07 (data from E. Ziv and E. Burchard, UCSF) 



Column Subset Selection Problem (CSSP) 

Input: an m-by-n matrix A and a rank parameter k.  

Goal: choose exactly k columns of A s.t. the m-by-k 
matrix C minimizes the error: 

•  Widely-studied problem in numerical linear algebra and optimization. 

•  Related to unsupervised feature selection. 

•  Choose the “best” k documents from a document corpus. 



Algorithm: Given an m-by-n matrix A and rank parameter k: 

•  (Randomized phase)  

 Randomly select c = O(k logk) columns according to “leverage score probabilities*”.  

•  (Deterministic phase)  

 Run a deterministic algorithm on the above columns to pick exactly k columns of A. 

Theorem: Let C be the m-by-k matrix of the selected columns.  Our algorithm 
runs in ”O(mmk)” and satisfies, w.p. ≥ 1-10-20, 

* Diagonal elements of the “hat 
matrix”--- see later. 

A hybrid two-stage algorithm 

Boutsidis, Mahoney, and Drineas (2007)   



Comparison with previous results 

Running time: comparable with NLA 
algorithms. 

Spectral norm: 

•  Spectral norm bound is k1/4log1/2k 
worse than previous work. 

Frobenius norm: 

•  An efficient algorithmic result 
at most (k logk)1/2 worse than 
the previous existential result. 

NLA: Deterministic algorithms. 

 Spectral norm. 

TCS: Randomized algorithms. 

 Sample more than k columns. 

 Frobenius norm bounds. 

Computation: usually interested in 
columns for the bases they 
span ! 

Data analysis: usually interested in 
the columns themselves ! 



Evaluation on term-document data  

TechTC (Technion 
Repository of Text 
Categorization Datasets) 
•  lots of diverse test collections 
from ODP 
•  ordered by categorization 
difficulty 
•  use hierarchical structure of the 
directory as background knowledge 
•  Davidov, Gabrilovich, and 
Markovitch 2004 

Fix k=10 and measure Frobenius norm error: 



Things to note … 

Different versions of QR (i.e., different pivot rules) perform differently … 

•  “obviously,” but be careful with “off the shelf” implementations. 

QR applied directly to Vk
T typically does better than QR applied to A … 

•  since Vk
T defined the relevant non-uniformity structure in A 

•  since columns “spread out,” have fewer problems with pivot rules 

“Randomized preprocessing” improves things even more … 

•  due to implicit regularization 

•  (if you are careful with various parameter choices) 

•  and it improves worse QR implementations more than better code 
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DNA HapMap SNP data 

•  Most NLA codes don’t even run on this 90 x 2M matrix. 

•  Informativeness is a state of the art supervised technique in genetics. 



SNPs by chromosomal order 
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Selecting PCA-correlated SNPs for individual assignment to four continents  
(Africa, Europe, Asia, America) 

Paschou et al (2007) PLoS Genetics 



An Aside on:  
Least Squares (LS) Approximation 

Ubiquitous in applications & central to theory:  
 Statistical interpretation: best linear unbiased estimator. 

 Geometric interpretation: orthogonally project b onto span(A). 



Algorithmic and Statistical Perspectives 

Algorithmic Question: How long does it take to solve this LS problem? 

 Answer: O(nd2) time, with Cholesky, QR, or SVD* 

Statistical Question: When is solving this LS problem the right thing to do?  

 Answer: When the data are “nice,” as quantified by the leverage scores. 

*BTW, we used statistical leverage score ideas to get the first (1+ε)-approximation worst-case-
analysis algorithm for the general LS problem that runs in o(nd2) time for any input matrix. 

 Theory: DM06,DMM06,S06,DMMS07 

 Numerical implementation: Tygert, Rokhlin, etc. (2008), Avron, Maymounkov, and Toledo (2009)  



Statistical Issues and Regression Diagnostics 

Statistical Model: b = Ax+ε    

 ε = “nice” error process 

 b’ = A xopt = A(ATA)-1ATb = prediction   

 H = A(ATA)-1AT is the “hat” matrix, i.e. projection onto span(A) 

Statistical Interpretation:   
 Hij -- measures the leverage or influence exerted on b’i by bj, 

 Note: Hii = |U(i)|2
2 = row “lengths” of spanning orthogonal matrix 

Note 1: these are the sampling probabilities we used for our worst-case algorithms! 

Note 2: high leverage scores traditionally used to flag outliers! 

Note 3: can compute all of them to (1±ε) in o(nd2) time! 



An Aside on the Aside on LS: 
Traditional algorithms 

For L2 regression: 
•  direct methods: QR, SVD, and normal equation (O(mn2 + n2) time) 

•  Pros: high precision & implemented in LAPACK 
•  Cons: hard to take advantage of sparsity & hard to implement in 
parallel environments 

•  iterative methods: CGLS, LSQR, etc. 
•  Pros: low cost per iteration, easy to implement in some parallel 
environments, & capable of computing approximate solutions 
•  Cons: hard to predict the number of iterations needed 

For L1 regression: 
•  linear programming 
•  interior-point methods (or simplex, ellipsoid? methods) 
•  re-weighted least squares 
•  first-order methods 



Two important notions: 
leverage and condition 
Statistical leverage. (Think: eigenvectors & low-precision solutions.) 

•  The statistical leverage scores of A (assume m>>n) are the diagonal 
elements of the projection matrix onto the column span of A. 
•  They equal the L2-norm-squared of any orthogonal basis spanning A. 
•  They measure: 

•  how well-correlated the singular vectors are with the canonical basis 
•  which constraints have largest “influence" on the LS fit 
•  a notion of “coherence” or “outlierness” 

•  Computing them exactly is as hard as solving the LS problem. 

Condition number. (Think: eigenvalues & high-precision solutions.) 

•  The L2-norm condition number of A is (A) = σmax(A)/σmin(A). 
•  κ(A) bounds the number of iterations  

•  for ill-conditioned problems (e.g., κ(A) ≅ 106 >> 1), convergence speed is slow. 
•  Computing κ(A) is generally as hard as solving the LS problem. 

These are for the L2-norm. Generalizations exist for the L1-norm. 



Condition number, well-conditioned 
bases and leverage scores for L1 norm 

Convenient to formulate L1 regression in what follows as: 
 minxεRn ||Ax||1 s.t. cTx=1     

•  Def: A matrix U ε Rmxn is (α, β, p = 1)-conditioned if ||U||1 ≤ α  and 
||x||∞ ≤ β ||Ux||1, forall x; and L1-well-conditioned if α,β  = poly(n). 

•  Def: The L1 leverage scores of an m x n matrix A, with m > n, are the 
L1-norms-squared of the rows of any L1-well-conditioned basis of A. 
(Only well-defined up to poly(n) factors.) 

•  Def: The L1-norm condition number of A, denoted by κ1(A), is: 
 κ1(A) = σ1,max(A) / σ1,min(A)  
  = ( Max||x||2=1 ||Ax||1 ) / ( Min||x||2=1 ||Ax||1 )  

Note that this implies:  
 σ1,min(A)||x||2 ≤ ||Ax||1 ≤ σ1,max(A)||x||2  , forall x ε Rn. 

(Dasgupta, Drineas, Harb, Kumar, Mahoney (2008); Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff (2012)) 



Meta-algorithm for L2 regression 

1: Using the L2 statistical leverage scores of A, construct an importance 
sampling distribution {pi}i=1,...,m 
2: Randomly sample a small number of constraints according to {pi}i,...,m to 
construct a subproblem. 
3: Solve the L2-regression problem on the subproblem. 

Naïve implementation:  1 + ε approximation in O(mn2/ε) time. (Ugh.) 

“Fast” O(mn log(n)/ε) in RAM if 
•  Hadamard-based projection and sample uniformly 
•  Quickly compute approximate leverage scores 

“High precision” O(mn log(n)log(1/ε))  in RAM if: 
•  use the random projection/sampling basis to construct a preconditioner 

Question: can we extend these ideas to parallel-distributed environments? 

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.) 



Meta-algorithm for L1 (& Lp) regression 

1: Using the L1 statistical leverage scores of A, construct an importance 
sampling distribution {pi}i=1,...,m 
2: Randomly sample a small number of constraints according to {pi}i,...,m to 
construct a subproblem. 
3: Solve the L1-regression problem on the subproblem. 

Naïve implementation:  1 + ε approximation in O(mn5/ε) time. (Ugh.) 

“Fast” in RAM if 

•  we perform a fast “L1 projection” to uniformize them approximately 
•  we approximate the L1 leverage scores quickly  

“High precision” in RAM if: 
•  we use the random projection/sampling basis to construct an L1 preconditioner 

Question: can we extend these ideas to parallel-distributed environments? 

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.) 



Parallel and distributed algorithms 
For L2 regression (LSRN): 
•  computes unique min-length solution to minx ||Ax-b||2 
•  very over/under-constrained, full-rank or rank-deficient A 
•  A can be dense, sparse, or a linear operator 
•  easy to implement using threads or with MPI, and scales well in parallel 
environments 
•  Minimize communication with the Chebyshev semi-iterative method 
•  Do L2 regression on communication-constrained Amazon EC2 

For L1 regression (beyond the FCT): 
•  Single-pass deterministic conditioning algorithm; 
•  Single-pass random sampling with map and reduce functions; 
•  Effective initialization by using multiple subsampled solutions; 
•  Effective iterative solving with a randomized IPCPM method by 
perfroming in parallel multiple queries at each iteration. 
•  Do L1 regression on a tera-byte of data in MapReduce 

Meng, Saunders, and Mahoney (2011, arXiv); Meng and Mahoney (2013) 



Leverage Scores of “Real” Data Matrices 

Leverage scores of Zachary karate 
network edge-incidence matrix. Cumulative leverage score for the Enron 

email data matrix. 



Leverage Scores and Information Gain 

Similar strong correlation between (unsupervised) Leverage Scores and (supervised)  Informativeness elsewhere! 



A few general thoughts 

Q1: Why does a statistical concept like leverage help with 
worst-case analysis of traditional NLA problems? 

•  A1: If a data point has high leverage and is not an error, as 
worst-case analysis implicitly assumes, it is very important! 

Q2: Why are statistical leverage scores so non-uniform in many 
modern large-scale data analysis applications? 

•  A2: Statistical models are often implicitly assumed for 
computational and not statistical reasons---many data points 
“stick out” relative to obviously inappropriate models! 



Outline 

•  “Algorithmic” and “statistical” perspectives on data problems 

•  Genetics application  

 DNA SNP analysis --> choose columns from a matrix 

•  Internet application 

 Community finding --> partitioning a graph 

In many large-scale data applications, “algorithmic” and 
“statistical” perspectives interact in fruitful ways --- we use 
statistical properties implicit in worst-case algorithms to make 
domain-specific claims!  



Networks and networked data 

Interaction graph model of 
networks:   
•  Nodes represent “entities” 
•  Edges represent “interaction” 
between pairs of entities 

Lots of “networked” data!! 
•  technological networks 

–  AS, power-grid, road networks 
•  biological networks 

–  food-web, protein networks 
•  social networks 

–  collaboration networks, friendships 
•  information networks 

–  co-citation, blog cross-postings, 
advertiser-bidded phrase graphs... 

•  language networks 
–  semantic networks... 

•  ... 



Social and Information Networks 



Motivation: Sponsored (“paid”) Search 
Text based ads driven by user specified query 

The process: 
•  Advertisers bids on query 
phrases.  

•  Users enter query phrase. 
•  Auction occurs. 

•  Ads selected, ranked, 
displayed. 

•  When user clicks, 
advertiser pays! 



Bidding and Spending Graphs 

Uses of Bidding and Spending 
graphs: 
•  “deep” micro-market identification. 

•  improved query expansion. 

More generally, user segmentation 
for behavioral targeting.  

A “social network” with “term-document” aspects.  



What do these networks “look” like?  



Micro-markets in sponsored search 
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What is the CTR and 
advertiser ROI  of sports 

gambling keywords?  

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.  
Ques: Is this even possible? 



Clustering and Community Finding 

•  Linear (Low-rank) methods 
 If Gaussian, then low-rank space is good. 

•  Kernel (non-linear) methods 
 If low-dimensional manifold, then kernels are good 

•  Hierarchical methods 
 Top-down and botton-up -- common in the social sciences 

•  Graph partitioning methods 
 Define “edge counting” metric in interaction graph, then optimize!  

“It is a matter of common experience that communities exist in networks ... Although not precisely 
defined, communities are usually thought of as sets of nodes with better connections amongst its 
members than with the rest of the world.” 



Communities, Conductance, and NCPPs 

Let A be the adjacency matrix of G=(V,E).  

The conductance φ of a set S of nodes is: 

The Network Community Profile (NCP) Plot of the graph is: 

•  Just as conductance captures the “gestalt” notion of cluster/ community 
quality, the NCP plot measures cluster/community quality as a function of size. 
•  NCP plot is intractable to compute exactly 
•  Use approximation algorithms to approximate it (even better than exactly) 

A “size-resolved” 
community-quality measure! 



Probing Large Networks  
with Approximation Algorithms 

Idea: Use approximation algorithms for NP-hard graph partitioning 
problems as experimental probes of network structure. 

 Spectral - (quadratic approx) - confuses “long paths” with “deep cuts” 

 Multi-commodity flow - (log(n) approx) - difficulty with expanders 

 SDP - (sqrt(log(n)) approx) - best in theory 

 Metis - (multi-resolution for mesh-like graphs) - common in practice  

 X+MQI - post-processing step on, e.g., Spectral of Metis 

Metis+MQI - best conductance (empirically) 

Local Spectral - connected and tighter sets (empirically) 

We are not interested in partitions per se, but in probing network structure. 



Approximation algorithms as 
experimental probes? 

The usual modus operandi for approximation algorithms:  

•  define an objective, the numerical value of which is intractable to compute 

•  develop approximation algorithm that returns approximation to that number 

•  graph achieving the approximation may be unrelated to the graph achieving the 
exact optimum. 

But, for randomized approximation algorithms with a geometric flavor (e.g. matrix 
algorithms, regression algorithms, eigenvector algorithms; duality algorithms, etc): 

•  often can approximate the vector achieving the exact solution 
•  randomized algorithms compute an ensemble of answers -- the details of which 
depend on choices made by the algorithm 

•  maybe compare different approximation algorithms for the same problem. 



Analogy: What does a protein look like? 

Experimental Procedure: 

•  Generate a bunch of output data by using 
the unseen object to filter a known input 
signal. 

•  Reconstruct the unseen object given the 
output signal and what we know about the 
artifactual properties of the input signal. 

Three possible representations (all-atom; 
backbone; and solvent-accessible 
surface) of the three-dimensional 
structure of the protein triose phosphate 
isomerase. 



Low-dimensional and small social networks 

Zachary’s karate club Newman’s Network Science d-dimensional meshes 

RoadNet-CA 



NCP for common generative models  

Preferential Attachment Copying Model 

RB Hierarchical Geometric PA 



What do large networks look like? 

Downward sloping NCPP 

 small social networks (validation) 

 “low-dimensional” networks (intuition) 

 hierarchical networks (model building) 

 existing generative models (incl. community models)  
Natural interpretation in terms of isoperimetry 

 implicit in modeling with low-dimensional spaces, manifolds, k-means, etc. 

Large social/information networks are very very  different 

 We examined more than 70 large social and information networks 

 We developed principled methods to interrogate large networks 
 Previous community work: on small social networks (hundreds, thousands) 



Typical example of our findings 

General relativity collaboration network 
(4,158 nodes, 13,422 edges) 
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Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010) 



Large Social and Information Networks 

LiveJournal Epinions 

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of 
whiskers), and black (randomly rewired network) for consistency and cross-validation.  

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010) 



“Whiskers” and the “core”  
•  Whiskers  

•  maximal sub-graph detached from 
network by removing a single edge 

•  Contain (on average) 40% of nodes and 
20% of edges 

•  Core 

•  the rest of the graph, i.e., the 2-edge-
connected core 

•  Global minimum of NCPP is a whisker 

Distribution of “whiskers” for AtP-DBLP. 

Epinions 

If remove whiskers, then the lowest 
conductance sets (the “best” communities) 
are “2-whiskers”: 



How do we know this plot it “correct”? 

•  Lower Bound Result 
 Spectral and SDP lower bounds for large partitions 

•  Modeling Result 
 Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts 

•  Structural Result 
 Small barely-connected “whiskers” responsible for minimum 

•  Algorithmic Result 
 Ensemble of sets returned by different algorithms are very different 

 Spectral vs. flow vs. bag-of-whiskers heuristic 

 Spectral method implicitly regularizes, gets more meaningful communities 



Random graphs and forest fires 

A “power law random graph” model (Chung-Lu) 
A “forest fire” model (LKF05) 



Regularized and non-regularized communities (1 of 2)  

•  Metis+MQI (red) gives sets with 
better conductance. 

•  Local Spectral (blue) gives tighter 
and more well-rounded sets. 



Regularized and non-regularized communities (2 of 2)  
Two ca. 500 node communities from Local Spectral Algorithm:  

Two ca. 500 node communities from Metis+MQI:  



A few general thoughts 

Regularization is typically implemented by adding a norm constraint 

•  makes the problem harder (think L1-regularized L2-
regression). 

Approximation algorithms for intractable graph problems implicitly 
regularize 

•  relative to combinatorial optimum 

•  incorporate empirical signatures of bias-variance tradeoff. 

Use statistical properties implicit in worst-case algorithms to 
provide insights into informatics graphs  

•  good since networks are large, sparse, and noisy. 



A “claimer” and a “disclaimer”: 

•  Today, mostly took a “10,000 foot” view: 

•  But, “drilled down” on two specific examples 
that illustrate “algorithmic-statistical” 
interplay in a novel way 

•  Mostly avoided* “rubber-hits-the-road” issues: 

•  Multi-core and multi-processor issues 

•  Map-Reduce and distributed computing  

•  Other large-scale implementation issues 

*But, these issues are very much a motivation and “behind-the-scenes” and important looking forward! 



Conclusions to Part One 

•  “Algorithmic” and “statistical” perspectives on data problems 

•  Genetics application  

 DNA SNP analysis --> choose columns from a matrix 

•  Internet application 

 Community finding --> partitioning a graph 

In many large-scale data applications, “algorithmic” and 
“statistical” perspectives interact in fruitful ways.  



In Two Parts 

Part One: Algorithmic and Statistical Perspectives on 
Large-scale Data Analysis: 
•  Describes these two approaches with two “anecdotes” from 
genetics and internet advertising applications 
•  Preprint: arXiv:1010.1609 (2010); In: Combinatorial Scientific 
Computing, pp. 427-469, edited by U. Naumann and O. Schenk, 2012 

Part Two: Approximate Computation and Implicit 
Regularization in Large-scale Data Analysis: 
•  Describes regularization, the concept at the heart of this 
difference, in traditional and novel contexts  
•  Preprint: arXiv:1203.0786 (2012);Proc. of the 2012 ACM 
Symposium on Principles of Database Systems, 143-154, 2012 



Anecdote 1:  
Randomized Matrix Algorithms 

How to “bridge the gap”? 
•  decouple randomization from linear algebra 

•  importance of statistical leverage scores! 

Theoretical origins 
•  theoretical computer 
science, convex analysis, etc. 

•  Johnson-Lindenstrauss 

•  Additive-error algs 

•  Good worst-case analysis 

•  No statistical analysis 

Practical applications 
•  NLA, ML, statistics, data 
analysis, genetics, etc 

•  Fast JL transform 

•  Relative-error algs 

•  Numerically-stable algs 

•  Good statistical properties 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Mahoney “Randomized Algorithms for Matrices and Data” (2011)   



Anecdote 2:  
Communities in large informatics graphs 

People imagine social 
networks to look like: 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)   

How do we know this plot is “correct”?  
•  (since computing conductance is intractable) 
•  Algorithmic Result (ensemble of sets returned by different approximation 
algorithms are very different) 

•  Statistical Result (Spectral provides more meaningful communities than flow)  

•  Lower Bound Result; Structural Result; Modeling Result; Etc. 

Real social networks 
actually look like: 

Size-resolved conductance 
(degree-weighted 
expansion) plot looks like: 

Data are expander-like 
at large size scales !!! 

There do not exist good large 
clusters in these graphs !!! 



Lessons from the anecdotes 

We are being forced to engineer a union between two very 
different worldviews on what are fruitful ways to view the data 
•  in spite of our best efforts not to 

Often fruitful to consider the statistical properties implicit in 
worst-case algorithms 
•  rather that first doing statistical modeling and then doing applying a 
computational procedure as a black box 

•  for both anecdotes, this was essential for leading to “useful theory” 

How to extend these ideas to “bridge the gap” b/w the theory 
and practice of MMDS (Modern Massive Data Set) analysis. 

•  QUESTION: Can we identify a/the concept at the heart of 
the algorithmic-statistical disconnect and then drill-down on it? 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)   



Outline and overview for Part Two 
Preamble: algorithmic & statistical perspectives 

General thoughts: data, algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three random-walk-based procedures (heat kernel, PageRank, truncated 
lazy random walk) are implicitly solving a regularized optimization exactly! 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 

Weakly-local and strongly-local graph partitioning methods 
•  Operationally like L1-regularization and already used in practice!  



Outline and overview 
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Approximate first nontrivial eigenvector of Laplacian 
•  Three random-walk-based procedures (heat kernel, PageRank, truncated 
lazy random walk) are implicitly solving a regularized optimization exactly! 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 

Weakly-local and strongly-local graph partitioning methods 
•  Operationally like L1-regularization and already used in practice!  



Thoughts on models of data (1 of 2) 
Data are whatever data are 
•  records of banking/financial transactions, hyperspectral medical/astronomical 
images, electromagnetic signals in remote sensing applications, DNA microarray/
SNP measurements, term-document data, search engine query/click logs, user 
interactions on social networks, corpora of images, sounds, videos, etc. 

To do something useful, you must model the data 
Two criteria when choosing a data model 
•  (data acquisition/generation side): want a structure that is 
“close enough” to the data that you don’t do too much “damage” 
to the data 

•  (downstream/analysis side): want a structure that is at a 
“sweet spot” between descriptive flexibility and algorithmic 
tractability 



Thoughts on models of data (2 of 2) 
Examples of data models: 
•  Flat tables and the relational model: one or more two-dimensional 
arrays of data elements, where different arrays can be related by 
predicate logic and set theory. 

•  Graphs, including trees and expanders:  G=(V,E), with a set of 
nodes V that represent “entities” and edges E that represent 
“interactions” between pairs of entities. 

•  Matrices, including SPSD matrices:  m “objects,” each of which is 
described by n “features,” i.e., an n-dimensional Euclidean vector, 
gives an m x n matrix A. 

Much modern data are relatively-unstructured; matrices and graphs are 
often useful, especially when traditional databases have problems. 



Relationship b/w algorithms and data (1 of 3) 

Before the digital computer: 
•  Natural sciences rich source of problems, statistical methods developed 
to solve those problems 

•  Very important notion: well-posed (well-conditioned) problem: solution 
exists, is unique, and is continuous w.r.t. problem parameters 

•  Simply doesn’t make sense to solve ill-posed problems  

Advent of the digital computer: 
•  Split in (yet-to-be-formed field of) “Computer Science”  

•  Based on application (scientific/numerical computing vs. business/
consumer applications) as well as tools (continuous math vs. discrete math) 

•  Two very different perspectives on relationship b/w algorithms and data 



Relationship b/w algorithms and data (2 of 3) 

Two-step approach for “numerical” problems 
•  Is problem well-posed/well-conditioned?  

•  If no, replace it with a well-posed problem.  (Regularization!) 

•  If yes, design a stable algorithm.  

View Algorithm A as a function f 
•  Given x, it tries to compute y but actually computes y* 

•  Forward error: Δy=y*-y  

•  Backward error: smallest Δx s.t. f(x+Δx) = y* 

•  Forward error ≤ Backward error * condition number 

•  Backward-stable algorithm provides accurate solution to well-posed problem! 



Relationship b/w algorithms and data (3 of 3) 

One-step approach for study of computation, per se 
•  Concept of computability captured by 3 seemingly-different discrete 
processes (recursion theory, λ-calculus, Turing machine) 

•  Computable functions have internal structure (P vs. NP, NP-hardness, etc.) 

•  Problems of practical interest are “intractable” (e.g., NP-hard vs. poly(n), 
or O(n3) vs. O(n log n)) 

Modern Theory of Approximation Algorithms 
•  provides forward-error bounds for worst-cast input 

•  worst case in two senses: (1) for all possible input & (2) i.t.o. relatively-
simple complexity measures, but independent of “structural parameters” 

•  get bounds by “relaxations” of IP to LP/SDP/etc., i.e., a “nicer” place  



Statistical regularization (1 of 3) 
Regularization in statistics, ML, and data analysis 
•  arose in integral equation theory to “solve” ill-posed problems 

•  computes a better or more “robust” solution, so better 
inference  

•  involves making (explicitly or implicitly) assumptions about data 

•  provides a trade-off between “solution quality” versus 
“solution niceness” 

•  often, heuristic approximation procedures have regularization 
properties as a “side effect”  

•  lies at the heart of the disconnect between the “algorithmic 
perspective” and the “statistical perspective” 



Statistical regularization (2 of 3) 
Usually implemented in 2 steps: 
•  add a norm constraint (or “geometric 
capacity control function”) g(x) to 
objective function f(x) 

•  solve the modified optimization problem 

 x’ = argminx f(x) + λ g(x) 

Often, this is a “harder” problem, 
e.g., L1-regularized L2-regression 

 x’ = argminx ||Ax-b||2 + λ ||x||1   



Statistical regularization (3 of 3) 
Regularization is often observed as a side-effect or 
by-product of other design decisions 
•  “binning,” “pruning,” etc. 

•  “truncating” small entries to zero, “early stopping” of iterations 

•  approximation algorithms and heuristic approximations engineers 
do to implement algorithms in large-scale systems 

BIG question: Can we formalize the notion that/when 
approximate computation can implicitly lead to “better” 
or “more regular” solutions than exact computation? 



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data, algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
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Weakly-local and strongly-local graph partitioning methods 
•  Operationally like L1-regularization and already used in practice!  



Notation for weighted undirected graph 



Approximating the top eigenvector 
Basic idea: Given an SPSD (e.g., Laplacian) matrix A,  
•  Power method starts with v0, and iteratively computes 

 vt+1 = Avt / ||Avt||2   . 

•  Then, vt = Σi γi
t vi -> v1   . 

•  If we truncate after (say) 3 or 10 iterations, still have some mixing 
from other eigen-directions 

What objective does the exact eigenvector optimize? 
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x. 

•  But can also express this as an SDP, for a SPSD matrix X.  

•  (We will put regularization on this SDP!) 



Views of approximate spectral methods 
Three common procedures (L=Laplacian, and M=r.w. matrix): 

•  Heat Kernel: 

•  PageRank: 

•  q-step Lazy Random Walk: 

Question: Do these “approximation procedures” exactly 
optimizing some regularized objective? 



Two versions of spectral partitioning 

VP: 

R-VP: 



Two versions of spectral partitioning 

VP: SDP: 

R-SDP: R-VP: 



A simple theorem  
Modification of the usual 
SDP form of spectral to 
have regularization (but, 
on the matrix X, not the 
vector x). 

Mahoney and Orecchia  (2010)   



Three simple corollaries 
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy) 

 gives scaled Heat Kernel matrix, with t = η 

FD(X) = -logdet(X) (i.e., Log-determinant) 
 gives scaled PageRank matrix, with t ~ η 

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1) 

 gives Truncated Lazy Random Walk, with λ ~ η 

( F() specifies the algorithm; “number of steps” specifies the η ) 

Answer: These “approximation procedures” compute 
regularized versions of the Fiedler vector exactly! 



A Statistical interpretation of this result (& 
framework for regularized graph estimation) 

Question:What about a “statistical” interpretation of 
this phenomenon of implicit regularization via 
approximate computation? 
•  Issue 1: Best to think of the graph (e.g., Web graph) as a 
single data point, so what is the “ensemble”? 

•  Issue 2: No reason to think that “easy-to-state problems” and 
“easy-to-state algorithms” intersect. 

•  Issue 3: No reason to think that “priors” corresponding to 
what people actually do are particularly “nice.” 

Perry and Mahoney  (2011)   



Recall regularized linear regression 



Bayesianization 



Bayesian inference for the population 
Laplacian (broadly) 



Bayesian inference for the population 
Laplacian (specifics) 



Heuristic justification for Wishart 



A prior related to PageRank procedure 
Perry and Mahoney  (2011)   



Main “Statistical” Result 
Perry and Mahoney  (2011)   



Empirical evaluation setup 



The prior vs. the simulation procedure 

The similarity suggests that the prior qualitatively matches 
simulation procedure, with α parameter analogous to sqrt(s/µ). 

Perry and Mahoney  (2011)   



Generating a sample 



Two estimators for population Laplacian 



Empirical results (1 of 3) 
Perry and Mahoney  (2011)   



Empirical results (2 of 3) 

The optimal regularization η depends on m/µ and s. 



Empirical results (3 of 3) 

The optimal η increases with m and s/µ (left); this 
agrees qualitatively with the Proposition (right). 
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Graph partitioning 
A family of combinatorial optimization problems - want to 
partition a graph’s nodes into two sets s.t.: 
•  Not much edge weight across the cut (cut quality) 

•  Both sides contain a lot of nodes 

Several standard formulations: 
•  Graph bisection (minimum cut with 50-50 balance) 

•  β-balanced bisection (minimum cut with 70-30 balance) 

•  cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion) 

•  cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts) 

All of these formalizations of the bi-criterion are NP-hard! 



Networks and networked data 

Interaction graph model of 
networks:   
•  Nodes represent “entities” 
•  Edges represent “interaction” 
between pairs of entities 

Lots of “networked” data!! 
•  technological networks 

–  AS, power-grid, road networks 
•  biological networks 

–  food-web, protein networks 
•  social networks 

–  collaboration networks, friendships 
•  information networks 

–  co-citation, blog cross-postings, 
advertiser-bidded phrase graphs... 

•  language networks 
–  semantic networks... 

•  ... 



Social and Information Networks 



Motivation: Sponsored (“paid”) Search 
Text based ads driven by user specified query 

The process: 
•  Advertisers bids on query 
phrases.  

•  Users enter query phrase. 
•  Auction occurs. 

•  Ads selected, ranked, 
displayed. 

•  When user clicks, 
advertiser pays! 



Bidding and Spending Graphs 

Uses of Bidding and Spending 
graphs: 
•  “deep” micro-market identification. 

•  improved query expansion. 

More generally, user segmentation 
for behavioral targeting.  

A “social network” with “term-document” aspects.  



Micro-markets in sponsored search 

10 million keywords 
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Sports 
Gambling 

Movies Media 

Sport 
videos 

What is the CTR and 
advertiser ROI  of sports 

gambling keywords?  

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.  
Ques: Is this even possible? 



What do these networks “look” like?  



The “lay of the land” 

Spectral methods* - compute eigenvectors of 
associated matrices 

Local improvement - easily get trapped in local minima, 
but can be used to clean up other cuts 

Multi-resolution - view (typically space-like graphs) at 
multiple size scales 

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas 

*Comes with strong underlying theory to guide heuristics. 



Comparison of “spectral” versus “flow” 
Spectral: 
•  Compute an eigenvector 

•  “Quadratic” worst-case bounds 

•  Worst-case achieved -- on “long 
stringy” graphs 

•  Worse-case is “local” property 

•  Embeds you on a line (or Kn) 

Flow: 
•  Compute a LP 

•  O(log n) worst-case bounds 

•  Worst-case achieved -- on 
expanders 

•  Worst case is “global” property 

•  Embeds you in L1 

Two methods -- complementary strengths and weaknesses 

•  What we compute is determined at least as much by as the 
approximation algorithm as by objective function. 



Explicit versus implicit geometry 

Explicitly-
imposed 
geometry 
•  Traditional 
regularization 
uses explicit 
norm constraint 
to make sure 
solution vector 
is “small” and 
not-too-complex  

(X,d) (X’,d’) 

x 

y 
d(x,y) f 

f(x) 

f(y) 

Implicitly-imposed 
geometry 
•  Approximation algorithms 
implicitly embed the data in a 
“nice” metric/geometric place 
and then round the solution. 



Regularized and non-regularized communities (1 of 2)  

•  Metis+MQI - a Flow-based method 
(red) gives sets with better 
conductance. 

•  Local Spectral (blue) gives tighter 
and more well-rounded sets. 

External/internal conductance 

Diameter of the cluster Conductance of  bounding cut 

Local Spectral 

Connected 

Disconnected 

Lower is good 



Regularized and non-regularized communities (2 of 2)  
Two ca. 500 node communities from Local Spectral Algorithm:  

Two ca. 500 node communities from Metis+MQI:  
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Preamble: algorithmic & statistical perspectives 

General thoughts: data, algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three random-walk-based procedures (heat kernel, PageRank, truncated 
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•  Operationally like L1-regularization, and already used in practice!  



Computing locally-biased partitions 

Often want clusters “near” a pre-specified set of nodes: 
•  Large social graphs have good small clusters, don’t have good large clusters 

•  Might have domain knowledge, so find “semi-supervised” clusters 

•  As algorithmic primitives, e.g., to solve linear equations fast. 



Recall global spectral graph partitioning 

•  Relaxation of: 
The basic optimization 
problem: 

•  Solvable via the eigenvalue 
problem: 

•  Sweep cut of second eigenvector 
yields: 

Idea to compute locally-biased partitions: 
•  Modify this objective with a locality constraint 
•  Show that some/all of these nice properties still hold locally 



Local spectral partitioning ansatz 

Primal program: Dual program: 

Interpretation: 
•  Find a cut well-correlated with 
the seed vector s. 

•  If s is a single node, this relaxes: 

Interpretation: 
•  Embedding a combination of 
scaled complete graph Kn and 
complete graphs T and T (KT and 
KT) - where the latter encourage 
cuts near (T,T). 

Mahoney, Orecchia, and Vishnoi (2010) 



Main theoretical results 

Theorem: If x* is an optimal solution to LocalSpectral, 

(*) it is a Generalized Personalized PageRank vector, and 
can be computed as solution to a set of linear equations; 

(*) one can find a cut of conductance ≤ 8λ(G,s,κ) in time 
O(n lg n) with sweep cut of x*; 

(*) For all sets of nodes T s.t. κ’ :=<s,sT>D
2 , we have: φ(T) 

≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ) if κ’ ≤ κ . 

Mahoney, Orecchia, and Vishnoi (2010) 

Lower bound: Spectral 
version of flow-
improvement algs. 

Upper bound, as usual from 
sweep cut & Cheeger. 

Fast running time 
guarantee. 



Illustration on small graphs 
•  Similar results if 
we do local random 
walks, truncated 
PageRank, and heat 
kernel diffusions. 

•  Often, it finds 
“worse” quality but 
“nicer” partitions 
than flow-improve 
methods. (Tradeoff 
we’ll see later.) 

Mahoney, Orecchia, and Vishnoi (2010) 



A somewhat different approach 

Strongly-local spectral methods  
 ST04: truncated “local”  random walks to compute locally-biased cut  

 ACL06: approximate locally-biased PageRank vector computations  

 Chung08: approximate heat-kernel computation to get a vector  

These are the diffusion-based procedures  
 that we saw before  

 except truncate/round/clip/push small things to zero 
 starting with localized initial condition 

Also get provably-good local version of global spectral  



What’s the connection? 

“Optimization” approach: 

•  Well-defined objective f 

•  Weakly local (touch all 
nodes), so good for medium-
scale problems 

•  Easy to use 

“Operational” approach*: 

•  Very fast algorithm  

•  Strongly local (clip/truncate 
small entries to zero), good 
for large-scale 

•  Very difficult to use 

* Informally, optimize f+λg (... almost formally!): steps are structurally-similar to the 
steps of how, e.g., L1-regularized L2 regression algorithms, implement regularization 

More importantly,  

•  This “operational” approach is already being adopted in PODS/
VLDB/SIGMOD/KDD/WWW environments! 

•  Let’s make the regularization explicit—and know what we compute!  



Looking forward ... 

A common modus operandi in many (really*) large-scale applications is: 
•  Run a procedure that bears some resemblance to the procedure you 
would run if you were to solve a given problem exactly 

•  Use the output in a way similar to how you would use the exact solution, 
or prove some result that is similar to what you could prove about the 
exact solution.  

BIG Question: Can we make this more principled?  E.g., can we 
“engineer” the approximations to solve (exactly but implicitly) some 
regularized version of the original problem---to do large scale 
analytics in a statistically more principled way? 

*e.g., industrial production, publication venues like WWW, SIGMOD, VLDB, etc. 



Conclusions to Part Two 

Regularization is: 
•  absent from CS, which historically has studied computation per se 

•  central to nearly area that applies algorithms to noisy data  

•  gets at the heart of the algorithmic-statistical “disconnect” 
Approximate computation, in and of itself, can implicitly regularize: 

•  Theory & the empirical signatures in matrix and graph problems 

•  Solutions of approximation algorithms don’t need to be something we 
“settle for,” they can be “better” than the “exact” solution 

In very large-scale analytics applications: 
•  Can we “engineer” database operations so “worst-case” approximation 
algorithms exactly solve regularized versions of original problem? 

•  I.e., can we get best of both worlds for very large-scale analytics? 



Conclusions ... And Looking Forward 
In many BIG data applications, “algorithmic” and 
“statistical” perspectives interact in fruitful ways 
•  Genetics: DNA SNP analysis --> choose columns from a matrix 
•  Internet: Community finding --> partitioning a graph 

Regularization lies at the heart of the algorithmic-
statistical disconnect 
•  Absent from CS, but central to every area that computes on noisy data  

•  Approximate computation, in and of itself, regularizes 

Connections with BIG Information Theory? 
•  What is information? What is data?  What is signal?  What is noise?  
How to use these ideas in information theory?   
•  You tell me ... 


