

BIG data??? MASSIVE data????

NYT, Feb 11, 2012: “The Age of Big Data”
•  “What is Big Data? A meme and a marketing term, for sure, but also
shorthand for advancing trends in technology that open the door to a new
approach to understanding the world and making decisions. …”

Why are big data big?
•  Generate data at different places/times and different resolutions

•  Factor of 10 more data is not just more data, but different data

BIG data??? MASSIVE data????

MASSIVE data:
•  Internet, Customer Transactions, Astronomy/HEP = “Petascale”

•  One Petabyte = watching 20 years of movies (HD) = listening to 20,000
years of MP3 (128 kbits/sec) = way too much to browse or comprehend

massive data:
•  105 people typed at 106 DNA SNPs; 106 or 109 node social network; etc.

In either case, main issues:
•  Memory management issues, e.g., push computation to the data

•  Hard to answer even basic questions about what data “looks like”

Algorithmic vs. Statistical Perspectives

Computer Scientists
•  Data: are a record of everything that happened.
•  Goal: process the data to find interesting patterns and associations.
•  Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists, etc)
•  Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
•  Goal: is to extract information about the world from noisy data.
•  Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000); Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Perspectives are NOT incompatible

•  Statistical/probabilistic ideas are central to recent work on
developing improved randomized algorithms for matrix problems.

•  Intractable optimization problems on graphs/networks yield to
approximation when assumptions are made about network
participants.

•  In boosting (a statistical technique that fits an additive model
by minimizing an objective function with a method such as
gradient descent), the computation parameter (i.e., the number
of iterations) also serves as a regularization parameter.

But they are VERY different paradigms

Statistics, natural sciences, scientific computing, etc:
•  Problems often involve computation, but the study of computation
per se is secondary
•  Only makes sense to develop algorithms for well-posed* problems
•  First, write down a model, and think about computation later

Computer science:
•  Easier to study computation per se in discrete settings, e.g.,
Turing machines, logic, complexity classes
•  Theory of algorithms divorces computation from data
•  First, run a fast algorithm, and ask what it means later

*Solution exists, is unique, and varies continuously with input data

How do we view BIG data?

In Two Parts

Part One: Algorithmic and Statistical Perspectives on
Large-scale Data Analysis:
•  Describes these two approaches with two “anecdotes” from
genetics and internet advertising applications
•  Preprint: arXiv:1010.1609 (2010); In: Combinatorial Scientific
Computing, pp. 427-469, edited by U. Naumann and O. Schenk, 2012

Part Two: Approximate Computation and Implicit
Regularization in Large-scale Data Analysis:
•  Describes regularization, the concept at the heart of this
difference, in traditional and novel contexts
•  Preprint: arXiv:1203.0786 (2012);Proc. of the 2012 ACM
Symposium on Principles of Database Systems, 143-154, 2012

In Two Parts

Part One: Algorithmic and Statistical Perspectives on
Large-scale Data Analysis:
•  Describes these two approaches with two “anecdotes” from
genetics and internet advertising applications
•  Preprint: arXiv:1010.1609 (2010); In: Combinatorial Scientific
Computing, pp. 427-469, edited by U. Naumann and O. Schenk, 2012

Part Two: Approximate Computation and Implicit
Regularization in Large-scale Data Analysis:
•  Describes regularization, the concept at the heart of this
difference, in traditional and novel contexts
•  Preprint: arXiv:1203.0786 (2012);Proc. of the 2012 ACM
Symposium on Principles of Database Systems, 143-154, 2012

Matrices and graphs in data analysis
Graphs:
•  model information network with graph G = (V,E) -- vertices represent
“entities” and edges represent “interactions” between pairs of entities

Matrices:
•  model data sets by a matrix -- since an m x n matrix A can encode
information about m objects, each of which is described by n features

Matrices and graphs represent a nice tradeoff between:
•  descriptive flexibility
•  algorithmic tractability

But, the issues that arise are very different than in traditional linear
algebra or graph theory AND the data place very different demands on
hardware than in traditional database or supercomputer applications.

Outline for Part One
•  “Algorithmic” and “statistical” perspectives on data problems

•  Genetics application
 DNA SNP analysis --> choose columns from a matrix

 PMJKPGKD, Genome Research ’07; PZBCRMD, PLOS Genetics ’07; Mahoney and
Drineas, PNAS ’09; DMM, SIMAX ‘08; BMD, SODA ‘09

•  Internet application
 Community finding --> partitioning a graph

 LLDM (WWW ‘08 & TR ‘08-IM‘09 & WWW ‘10)

We will focus on what was going on “under the hood” in these two
applications --- use statistical properties implicit in worst-case
algorithms to make domain-specific claims!

 SNPs are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

 SNPs occur quite frequently within the genome and thus are effective genomic
markers for the tracking of disease genes and population histories.

DNA SNPs and human genetics
•  Human genome ≈ 3 billion base pairs

•  25,000 – 30,000 genes

•  Functionality of 97% of the genome is unknown.

•  Individual “polymorphic” variations at ≈ 1 b.p./thousand.

C

T

DNA SNPs and data analysis
A common modus operandi in applying NLA to data problems:

•  Write the gene/SNP data as an m x n matrix A.

•  Do SVD/PCA to get a small number of eigenvectors

•  Either: interpret the eigenvectors as meaningful i.t.o. underlying genes/SNPs

 use a heuristic to get actual genes/SNPs from those eigenvectors

Unfortunately, eigenvectors themselves are meaningless (recall reification in stats):

•  “EigenSNPs” (being linear combinations of SNPs) can not be assayed …

•  … nor can “eigengenes” from micro-arrays be isolated and purified …

•  … nor do we really care about “eigenpatients” respond to treatment ...

DNA SNPs and low-rank methods

•  Common genetics task: find a small subset of informative actual SNPs

 to cluster individuals depending on their ancestry

 to determine predisposition to diseases

•  Algorithmic question: Can we find the best k actual columns from a matrix?

 Can we find actual SNPs that “capture” information in singular vectors?

 Can we find actual SNPs that are maximally uncorrelated?

•  Common formalization of “best” lead to intractable optimization problems.

PMJKPGKD, Genome Research ’07 (data from K. Kidd, Yale University)
PZBCRMD, PLOS Genetics ’07 (data from E. Ziv and E. Burchard, UCSF)

Column Subset Selection Problem (CSSP)

Input: an m-by-n matrix A and a rank parameter k.

Goal: choose exactly k columns of A s.t. the m-by-k
matrix C minimizes the error:

•  Widely-studied problem in numerical linear algebra and optimization.

•  Related to unsupervised feature selection.

•  Choose the “best” k documents from a document corpus.

Algorithm: Given an m-by-n matrix A and rank parameter k:

•  (Randomized phase)

 Randomly select c = O(k logk) columns according to “leverage score probabilities*”.

•  (Deterministic phase)

 Run a deterministic algorithm on the above columns to pick exactly k columns of A.

Theorem: Let C be the m-by-k matrix of the selected columns. Our algorithm
runs in ”O(mmk)” and satisfies, w.p. ≥ 1-10-20,

* Diagonal elements of the “hat
matrix”--- see later.

A hybrid two-stage algorithm

Boutsidis, Mahoney, and Drineas (2007)

Comparison with previous results

Running time: comparable with NLA
algorithms.

Spectral norm:

•  Spectral norm bound is k1/4log1/2k
worse than previous work.

Frobenius norm:

•  An efficient algorithmic result
at most (k logk)1/2 worse than
the previous existential result.

NLA: Deterministic algorithms.

 Spectral norm.

TCS: Randomized algorithms.

 Sample more than k columns.

 Frobenius norm bounds.

Computation: usually interested in
columns for the bases they
span !

Data analysis: usually interested in
the columns themselves !

Evaluation on term-document data

TechTC (Technion
Repository of Text
Categorization Datasets)
•  lots of diverse test collections
from ODP
•  ordered by categorization
difficulty
•  use hierarchical structure of the
directory as background knowledge
•  Davidov, Gabrilovich, and
Markovitch 2004

Fix k=10 and measure Frobenius norm error:

Things to note …

Different versions of QR (i.e., different pivot rules) perform differently …

•  “obviously,” but be careful with “off the shelf” implementations.

QR applied directly to Vk
T typically does better than QR applied to A …

•  since Vk
T defined the relevant non-uniformity structure in A

•  since columns “spread out,” have fewer problems with pivot rules

“Randomized preprocessing” improves things even more …

•  due to implicit regularization

•  (if you are careful with various parameter choices)

•  and it improves worse QR implementations more than better code

FIG. 6

in
di

vi
du

al
s … AG CT GT GG CT CC CG AG AG AC AG CT AG CT …

… GG TT TT GG TT CC GG AG AA AC AG CT GG CT …

… AG CC GG GT CT CT CC GG AG CC GG CC AG CT …

… AA CT GT GG TT TT CC GG GG AA GG CT AG CC …

Select tSNPs

IN: population A

OUT: set of tSNPs

SNPs

in
di

vi
du

al
s … AA TT GT TT CC CT CG AG GG CC AA CC AA TT …

… AG CT GG TT TT CT CC GG AA AA AA CC AA TT …

… AG CC GG GT CT CC CC AG AA AC AG CT AA CT …

… AA CC GG GT CT TT CG AA AG CC GG CT AG CC …

Population A

Reconstruct SNPs

IN: population A & assayed
tSNPs in B

OUT: unassayed SNPs in B

Population B

SNPs

in
di

vi
du

al
s … AA ?? GT ?? ?? ?? CG ?? ?? ?? AA ?? ?? ?? …

… AG ?? GG ?? ?? ?? CC ?? ?? ?? AA ?? ?? ?? …

… AG ?? GG ?? ?? ?? CC ?? ?? ?? AG ?? ?? ?? …

… AA ?? GG ?? ?? ?? CG ?? ?? ?? GG ?? ?? ?? …

Population B

SNPs

: tSNP

Assay
tSNPs in

population
B

Transferability of tagging SNPs

-

Yoruba Biaka

Mbuti
Ibo

Hausa

Jews, Ethiopian

African Americans

Chagga

N > 50

N: 25 ~ 50

Africa

SW Asia

Druze

Jews, Yemenite

Samaritans

Europe

Adygei

Russians

Finns

Danes Irish European, Mixed
Chuvash

Chinese, Taiwan

Chinese,

Han

Hakka Japanese

Atayal

Ami

Cambodians

E Asia

NW Siberia NE Siberia

Yakut
Kom

-

Zyrian
Khanty

Oceania

Micronesians

Nasioi

Jews, Ashkenazi

N America S America

Ticuna

Surui

Karitiana

Pima, Arizona

Pima, Mexico

Cheyenne

Maya

DNA HapMap SNP data

•  Most NLA codes don’t even run on this 90 x 2M matrix.

•  Informativeness is a state of the art supervised technique in genetics.

SNPs by chromosomal order

PC
A

-s
co

re
s

* top 30 PCA-correlated SNPs

Africa

Europe

Asia

America

Afr

Eur

Asi

Ame

Selecting PCA-correlated SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Paschou et al (2007) PLoS Genetics

An Aside on:
Least Squares (LS) Approximation

Ubiquitous in applications & central to theory:
 Statistical interpretation: best linear unbiased estimator.

 Geometric interpretation: orthogonally project b onto span(A).

Algorithmic and Statistical Perspectives

Algorithmic Question: How long does it take to solve this LS problem?

 Answer: O(nd2) time, with Cholesky, QR, or SVD*

Statistical Question: When is solving this LS problem the right thing to do?

 Answer: When the data are “nice,” as quantified by the leverage scores.

*BTW, we used statistical leverage score ideas to get the first (1+ε)-approximation worst-case-
analysis algorithm for the general LS problem that runs in o(nd2) time for any input matrix.

 Theory: DM06,DMM06,S06,DMMS07

 Numerical implementation: Tygert, Rokhlin, etc. (2008), Avron, Maymounkov, and Toledo (2009)

Statistical Issues and Regression Diagnostics

Statistical Model: b = Ax+ε

 ε = “nice” error process

 b’ = A xopt = A(ATA)-1ATb = prediction

 H = A(ATA)-1AT is the “hat” matrix, i.e. projection onto span(A)

Statistical Interpretation:
 Hij -- measures the leverage or influence exerted on b’i by bj,

 Note: Hii = |U(i)|2
2 = row “lengths” of spanning orthogonal matrix

Note 1: these are the sampling probabilities we used for our worst-case algorithms!

Note 2: high leverage scores traditionally used to flag outliers!

Note 3: can compute all of them to (1±ε) in o(nd2) time!

An Aside on the Aside on LS:
Traditional algorithms

For L2 regression:
•  direct methods: QR, SVD, and normal equation (O(mn2 + n2) time)

•  Pros: high precision & implemented in LAPACK
•  Cons: hard to take advantage of sparsity & hard to implement in
parallel environments

•  iterative methods: CGLS, LSQR, etc.
•  Pros: low cost per iteration, easy to implement in some parallel
environments, & capable of computing approximate solutions
•  Cons: hard to predict the number of iterations needed

For L1 regression:
•  linear programming
•  interior-point methods (or simplex, ellipsoid? methods)
•  re-weighted least squares
•  first-order methods

Two important notions:
leverage and condition
Statistical leverage. (Think: eigenvectors & low-precision solutions.)

•  The statistical leverage scores of A (assume m>>n) are the diagonal
elements of the projection matrix onto the column span of A.
•  They equal the L2-norm-squared of any orthogonal basis spanning A.
•  They measure:

•  how well-correlated the singular vectors are with the canonical basis
•  which constraints have largest “influence" on the LS fit
•  a notion of “coherence” or “outlierness”

•  Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues & high-precision solutions.)

•  The L2-norm condition number of A is (A) = σmax(A)/σmin(A).
•  κ(A) bounds the number of iterations

•  for ill-conditioned problems (e.g., κ(A) ≅ 106 >> 1), convergence speed is slow.
•  Computing κ(A) is generally as hard as solving the LS problem.

These are for the L2-norm. Generalizations exist for the L1-norm.

Condition number, well-conditioned
bases and leverage scores for L1 norm

Convenient to formulate L1 regression in what follows as:
 minxεRn ||Ax||1 s.t. cTx=1

•  Def: A matrix U ε Rmxn is (α, β, p = 1)-conditioned if ||U||1 ≤ α and
||x||∞ ≤ β ||Ux||1, forall x; and L1-well-conditioned if α,β = poly(n).

•  Def: The L1 leverage scores of an m x n matrix A, with m > n, are the
L1-norms-squared of the rows of any L1-well-conditioned basis of A.
(Only well-defined up to poly(n) factors.)

•  Def: The L1-norm condition number of A, denoted by κ1(A), is:
 κ1(A) = σ1,max(A) / σ1,min(A)
 = (Max||x||2=1 ||Ax||1) / (Min||x||2=1 ||Ax||1)

Note that this implies:
 σ1,min(A)||x||2 ≤ ||Ax||1 ≤ σ1,max(A)||x||2 , forall x ε Rn.

(Dasgupta, Drineas, Harb, Kumar, Mahoney (2008); Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff (2012))

Meta-algorithm for L2 regression

1: Using the L2 statistical leverage scores of A, construct an importance
sampling distribution {pi}i=1,...,m
2: Randomly sample a small number of constraints according to {pi}i,...,m to
construct a subproblem.
3: Solve the L2-regression problem on the subproblem.

Naïve implementation: 1 + ε approximation in O(mn2/ε) time. (Ugh.)

“Fast” O(mn log(n)/ε) in RAM if
•  Hadamard-based projection and sample uniformly
•  Quickly compute approximate leverage scores

“High precision” O(mn log(n)log(1/ε)) in RAM if:
•  use the random projection/sampling basis to construct a preconditioner

Question: can we extend these ideas to parallel-distributed environments?

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Meta-algorithm for L1 (& Lp) regression

1: Using the L1 statistical leverage scores of A, construct an importance
sampling distribution {pi}i=1,...,m
2: Randomly sample a small number of constraints according to {pi}i,...,m to
construct a subproblem.
3: Solve the L1-regression problem on the subproblem.

Naïve implementation: 1 + ε approximation in O(mn5/ε) time. (Ugh.)

“Fast” in RAM if

•  we perform a fast “L1 projection” to uniformize them approximately
•  we approximate the L1 leverage scores quickly

“High precision” in RAM if:
•  we use the random projection/sampling basis to construct an L1 preconditioner

Question: can we extend these ideas to parallel-distributed environments?

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.)

Parallel and distributed algorithms
For L2 regression (LSRN):
•  computes unique min-length solution to minx ||Ax-b||2
•  very over/under-constrained, full-rank or rank-deficient A
•  A can be dense, sparse, or a linear operator
•  easy to implement using threads or with MPI, and scales well in parallel
environments
•  Minimize communication with the Chebyshev semi-iterative method
•  Do L2 regression on communication-constrained Amazon EC2

For L1 regression (beyond the FCT):
•  Single-pass deterministic conditioning algorithm;
•  Single-pass random sampling with map and reduce functions;
•  Effective initialization by using multiple subsampled solutions;
•  Effective iterative solving with a randomized IPCPM method by
perfroming in parallel multiple queries at each iteration.
•  Do L1 regression on a tera-byte of data in MapReduce

Meng, Saunders, and Mahoney (2011, arXiv); Meng and Mahoney (2013)

Leverage Scores of “Real” Data Matrices

Leverage scores of Zachary karate
network edge-incidence matrix. Cumulative leverage score for the Enron

email data matrix.

Leverage Scores and Information Gain

Similar strong correlation between (unsupervised) Leverage Scores and (supervised) Informativeness elsewhere!

A few general thoughts

Q1: Why does a statistical concept like leverage help with
worst-case analysis of traditional NLA problems?

•  A1: If a data point has high leverage and is not an error, as
worst-case analysis implicitly assumes, it is very important!

Q2: Why are statistical leverage scores so non-uniform in many
modern large-scale data analysis applications?

•  A2: Statistical models are often implicitly assumed for
computational and not statistical reasons---many data points
“stick out” relative to obviously inappropriate models!

Outline

•  “Algorithmic” and “statistical” perspectives on data problems

•  Genetics application

 DNA SNP analysis --> choose columns from a matrix

•  Internet application

 Community finding --> partitioning a graph

In many large-scale data applications, “algorithmic” and
“statistical” perspectives interact in fruitful ways --- we use
statistical properties implicit in worst-case algorithms to make
domain-specific claims!

Networks and networked data

Interaction graph model of
networks:
•  Nodes represent “entities”
•  Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
•  technological networks

–  AS, power-grid, road networks
•  biological networks

–  food-web, protein networks
•  social networks

–  collaboration networks, friendships
•  information networks

–  co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

•  language networks
–  semantic networks...

•  ...

Social and Information Networks

Motivation: Sponsored (“paid”) Search
Text based ads driven by user specified query

The process:
•  Advertisers bids on query
phrases.

•  Users enter query phrase.
•  Auction occurs.

•  Ads selected, ranked,
displayed.

•  When user clicks,
advertiser pays!

Bidding and Spending Graphs

Uses of Bidding and Spending
graphs:
•  “deep” micro-market identification.

•  improved query expansion.

More generally, user segmentation
for behavioral targeting.

A “social network” with “term-document” aspects.

What do these networks “look” like?

Micro-markets in sponsored search

10 million keywords

1.
4

M
ill

io
n

A
dv

er
tis

er
s

Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI of sports

gambling keywords?

Goal: Find isolated markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?

Clustering and Community Finding

•  Linear (Low-rank) methods
 If Gaussian, then low-rank space is good.

•  Kernel (non-linear) methods
 If low-dimensional manifold, then kernels are good

•  Hierarchical methods
 Top-down and botton-up -- common in the social sciences

•  Graph partitioning methods
 Define “edge counting” metric in interaction graph, then optimize!

“It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”

Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

•  Just as conductance captures the “gestalt” notion of cluster/ community
quality, the NCP plot measures cluster/community quality as a function of size.
•  NCP plot is intractable to compute exactly
•  Use approximation algorithms to approximate it (even better than exactly)

A “size-resolved”
community-quality measure!

Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

 Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

 Multi-commodity flow - (log(n) approx) - difficulty with expanders

 SDP - (sqrt(log(n)) approx) - best in theory

 Metis - (multi-resolution for mesh-like graphs) - common in practice

 X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically)

We are not interested in partitions per se, but in probing network structure.

Approximation algorithms as
experimental probes?

The usual modus operandi for approximation algorithms:

•  define an objective, the numerical value of which is intractable to compute

•  develop approximation algorithm that returns approximation to that number

•  graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g. matrix
algorithms, regression algorithms, eigenvector algorithms; duality algorithms, etc):

•  often can approximate the vector achieving the exact solution
•  randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

•  maybe compare different approximation algorithms for the same problem.

Analogy: What does a protein look like?

Experimental Procedure:

•  Generate a bunch of output data by using
the unseen object to filter a known input
signal.

•  Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible
surface) of the three-dimensional
structure of the protein triose phosphate
isomerase.

Low-dimensional and small social networks

Zachary’s karate club Newman’s Network Science d-dimensional meshes

RoadNet-CA

NCP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA

What do large networks look like?

Downward sloping NCPP

 small social networks (validation)

 “low-dimensional” networks (intuition)

 hierarchical networks (model building)

 existing generative models (incl. community models)
Natural interpretation in terms of isoperimetry

 implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very different

 We examined more than 70 large social and information networks

 We developed principled methods to interrogate large networks
 Previous community work: on small social networks (hundreds, thousands)

Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)

52	 Community	 size	

Co
m
m
un

ity
	 s
co

re
	

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)

Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)

“Whiskers” and the “core”
•  Whiskers

•  maximal sub-graph detached from
network by removing a single edge

•  Contain (on average) 40% of nodes and
20% of edges

•  Core

•  the rest of the graph, i.e., the 2-edge-
connected core

•  Global minimum of NCPP is a whisker

Distribution of “whiskers” for AtP-DBLP.

Epinions

If remove whiskers, then the lowest
conductance sets (the “best” communities)
are “2-whiskers”:

How do we know this plot it “correct”?

•  Lower Bound Result
 Spectral and SDP lower bounds for large partitions

•  Modeling Result
 Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts

•  Structural Result
 Small barely-connected “whiskers” responsible for minimum

•  Algorithmic Result
 Ensemble of sets returned by different algorithms are very different

 Spectral vs. flow vs. bag-of-whiskers heuristic

 Spectral method implicitly regularizes, gets more meaningful communities

Random graphs and forest fires

A “power law random graph” model (Chung-Lu)
A “forest fire” model (LKF05)

Regularized and non-regularized communities (1 of 2)

•  Metis+MQI (red) gives sets with
better conductance.

•  Local Spectral (blue) gives tighter
and more well-rounded sets.

Regularized and non-regularized communities (2 of 2)
Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

A few general thoughts

Regularization is typically implemented by adding a norm constraint

•  makes the problem harder (think L1-regularized L2-
regression).

Approximation algorithms for intractable graph problems implicitly
regularize

•  relative to combinatorial optimum

•  incorporate empirical signatures of bias-variance tradeoff.

Use statistical properties implicit in worst-case algorithms to
provide insights into informatics graphs

•  good since networks are large, sparse, and noisy.

A “claimer” and a “disclaimer”:

•  Today, mostly took a “10,000 foot” view:

•  But, “drilled down” on two specific examples
that illustrate “algorithmic-statistical”
interplay in a novel way

•  Mostly avoided* “rubber-hits-the-road” issues:

•  Multi-core and multi-processor issues

•  Map-Reduce and distributed computing

•  Other large-scale implementation issues

*But, these issues are very much a motivation and “behind-the-scenes” and important looking forward!

Conclusions to Part One

•  “Algorithmic” and “statistical” perspectives on data problems

•  Genetics application

 DNA SNP analysis --> choose columns from a matrix

•  Internet application

 Community finding --> partitioning a graph

In many large-scale data applications, “algorithmic” and
“statistical” perspectives interact in fruitful ways.

In Two Parts

Part One: Algorithmic and Statistical Perspectives on
Large-scale Data Analysis:
•  Describes these two approaches with two “anecdotes” from
genetics and internet advertising applications
•  Preprint: arXiv:1010.1609 (2010); In: Combinatorial Scientific
Computing, pp. 427-469, edited by U. Naumann and O. Schenk, 2012

Part Two: Approximate Computation and Implicit
Regularization in Large-scale Data Analysis:
•  Describes regularization, the concept at the heart of this
difference, in traditional and novel contexts
•  Preprint: arXiv:1203.0786 (2012);Proc. of the 2012 ACM
Symposium on Principles of Database Systems, 143-154, 2012

Anecdote 1:
Randomized Matrix Algorithms

How to “bridge the gap”?
•  decouple randomization from linear algebra

•  importance of statistical leverage scores!

Theoretical origins
•  theoretical computer
science, convex analysis, etc.

•  Johnson-Lindenstrauss

•  Additive-error algs

•  Good worst-case analysis

•  No statistical analysis

Practical applications
•  NLA, ML, statistics, data
analysis, genetics, etc

•  Fast JL transform

•  Relative-error algs

•  Numerically-stable algs

•  Good statistical properties

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)
Mahoney “Randomized Algorithms for Matrices and Data” (2011)

Anecdote 2:
Communities in large informatics graphs

People imagine social
networks to look like:

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)
Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)

How do we know this plot is “correct”?
•  (since computing conductance is intractable)
•  Algorithmic Result (ensemble of sets returned by different approximation
algorithms are very different)

•  Statistical Result (Spectral provides more meaningful communities than flow)

•  Lower Bound Result; Structural Result; Modeling Result; Etc.

Real social networks
actually look like:

Size-resolved conductance
(degree-weighted
expansion) plot looks like:

Data are expander-like
at large size scales !!!

There do not exist good large
clusters in these graphs !!!

Lessons from the anecdotes

We are being forced to engineer a union between two very
different worldviews on what are fruitful ways to view the data
•  in spite of our best efforts not to

Often fruitful to consider the statistical properties implicit in
worst-case algorithms
•  rather that first doing statistical modeling and then doing applying a
computational procedure as a black box

•  for both anecdotes, this was essential for leading to “useful theory”

How to extend these ideas to “bridge the gap” b/w the theory
and practice of MMDS (Modern Massive Data Set) analysis.

•  QUESTION: Can we identify a/the concept at the heart of
the algorithmic-statistical disconnect and then drill-down on it?

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Outline and overview for Part Two
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Thoughts on models of data (1 of 2)
Data are whatever data are
•  records of banking/financial transactions, hyperspectral medical/astronomical
images, electromagnetic signals in remote sensing applications, DNA microarray/
SNP measurements, term-document data, search engine query/click logs, user
interactions on social networks, corpora of images, sounds, videos, etc.

To do something useful, you must model the data
Two criteria when choosing a data model
•  (data acquisition/generation side): want a structure that is
“close enough” to the data that you don’t do too much “damage”
to the data

•  (downstream/analysis side): want a structure that is at a
“sweet spot” between descriptive flexibility and algorithmic
tractability

Thoughts on models of data (2 of 2)
Examples of data models:
•  Flat tables and the relational model: one or more two-dimensional
arrays of data elements, where different arrays can be related by
predicate logic and set theory.

•  Graphs, including trees and expanders: G=(V,E), with a set of
nodes V that represent “entities” and edges E that represent
“interactions” between pairs of entities.

•  Matrices, including SPSD matrices: m “objects,” each of which is
described by n “features,” i.e., an n-dimensional Euclidean vector,
gives an m x n matrix A.

Much modern data are relatively-unstructured; matrices and graphs are
often useful, especially when traditional databases have problems.

Relationship b/w algorithms and data (1 of 3)

Before the digital computer:
•  Natural sciences rich source of problems, statistical methods developed
to solve those problems

•  Very important notion: well-posed (well-conditioned) problem: solution
exists, is unique, and is continuous w.r.t. problem parameters

•  Simply doesn’t make sense to solve ill-posed problems

Advent of the digital computer:
•  Split in (yet-to-be-formed field of) “Computer Science”

•  Based on application (scientific/numerical computing vs. business/
consumer applications) as well as tools (continuous math vs. discrete math)

•  Two very different perspectives on relationship b/w algorithms and data

Relationship b/w algorithms and data (2 of 3)

Two-step approach for “numerical” problems
•  Is problem well-posed/well-conditioned?

•  If no, replace it with a well-posed problem. (Regularization!)

•  If yes, design a stable algorithm.

View Algorithm A as a function f
•  Given x, it tries to compute y but actually computes y*

•  Forward error: Δy=y*-y

•  Backward error: smallest Δx s.t. f(x+Δx) = y*

•  Forward error ≤ Backward error * condition number

•  Backward-stable algorithm provides accurate solution to well-posed problem!

Relationship b/w algorithms and data (3 of 3)

One-step approach for study of computation, per se
•  Concept of computability captured by 3 seemingly-different discrete
processes (recursion theory, λ-calculus, Turing machine)

•  Computable functions have internal structure (P vs. NP, NP-hardness, etc.)

•  Problems of practical interest are “intractable” (e.g., NP-hard vs. poly(n),
or O(n3) vs. O(n log n))

Modern Theory of Approximation Algorithms
•  provides forward-error bounds for worst-cast input

•  worst case in two senses: (1) for all possible input & (2) i.t.o. relatively-
simple complexity measures, but independent of “structural parameters”

•  get bounds by “relaxations” of IP to LP/SDP/etc., i.e., a “nicer” place

Statistical regularization (1 of 3)
Regularization in statistics, ML, and data analysis
•  arose in integral equation theory to “solve” ill-posed problems

•  computes a better or more “robust” solution, so better
inference

•  involves making (explicitly or implicitly) assumptions about data

•  provides a trade-off between “solution quality” versus
“solution niceness”

•  often, heuristic approximation procedures have regularization
properties as a “side effect”

•  lies at the heart of the disconnect between the “algorithmic
perspective” and the “statistical perspective”

Statistical regularization (2 of 3)
Usually implemented in 2 steps:
•  add a norm constraint (or “geometric
capacity control function”) g(x) to
objective function f(x)

•  solve the modified optimization problem

 x’ = argminx f(x) + λ g(x)

Often, this is a “harder” problem,
e.g., L1-regularized L2-regression

 x’ = argminx ||Ax-b||2 + λ ||x||1

Statistical regularization (3 of 3)
Regularization is often observed as a side-effect or
by-product of other design decisions
•  “binning,” “pruning,” etc.

•  “truncating” small entries to zero, “early stopping” of iterations

•  approximation algorithms and heuristic approximations engineers
do to implement algorithms in large-scale systems

BIG question: Can we formalize the notion that/when
approximate computation can implicitly lead to “better”
or “more regular” solutions than exact computation?

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Notation for weighted undirected graph

Approximating the top eigenvector
Basic idea: Given an SPSD (e.g., Laplacian) matrix A,
•  Power method starts with v0, and iteratively computes

 vt+1 = Avt / ||Avt||2 .

•  Then, vt = Σi γi
t vi -> v1 .

•  If we truncate after (say) 3 or 10 iterations, still have some mixing
from other eigen-directions

What objective does the exact eigenvector optimize?
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x.

•  But can also express this as an SDP, for a SPSD matrix X.

•  (We will put regularization on this SDP!)

Views of approximate spectral methods
Three common procedures (L=Laplacian, and M=r.w. matrix):

•  Heat Kernel:

•  PageRank:

•  q-step Lazy Random Walk:

Question: Do these “approximation procedures” exactly
optimizing some regularized objective?

Two versions of spectral partitioning

VP:

R-VP:

Two versions of spectral partitioning

VP: SDP:

R-SDP: R-VP:

A simple theorem
Modification of the usual
SDP form of spectral to
have regularization (but,
on the matrix X, not the
vector x).

Mahoney and Orecchia (2010)

Three simple corollaries
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

 gives scaled Heat Kernel matrix, with t = η

FD(X) = -logdet(X) (i.e., Log-determinant)
 gives scaled PageRank matrix, with t ~ η

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1)

 gives Truncated Lazy Random Walk, with λ ~ η

(F() specifies the algorithm; “number of steps” specifies the η)

Answer: These “approximation procedures” compute
regularized versions of the Fiedler vector exactly!

A Statistical interpretation of this result (&
framework for regularized graph estimation)

Question:What about a “statistical” interpretation of
this phenomenon of implicit regularization via
approximate computation?
•  Issue 1: Best to think of the graph (e.g., Web graph) as a
single data point, so what is the “ensemble”?

•  Issue 2: No reason to think that “easy-to-state problems” and
“easy-to-state algorithms” intersect.

•  Issue 3: No reason to think that “priors” corresponding to
what people actually do are particularly “nice.”

Perry and Mahoney (2011)

Recall regularized linear regression

Bayesianization

Bayesian inference for the population
Laplacian (broadly)

Bayesian inference for the population
Laplacian (specifics)

Heuristic justification for Wishart

A prior related to PageRank procedure
Perry and Mahoney (2011)

Main “Statistical” Result
Perry and Mahoney (2011)

Empirical evaluation setup

The prior vs. the simulation procedure

The similarity suggests that the prior qualitatively matches
simulation procedure, with α parameter analogous to sqrt(s/µ).

Perry and Mahoney (2011)

Generating a sample

Two estimators for population Laplacian

Empirical results (1 of 3)
Perry and Mahoney (2011)

Empirical results (2 of 3)

The optimal regularization η depends on m/µ and s.

Empirical results (3 of 3)

The optimal η increases with m and s/µ (left); this
agrees qualitatively with the Proposition (right).

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
•  Not much edge weight across the cut (cut quality)

•  Both sides contain a lot of nodes

Several standard formulations:
•  Graph bisection (minimum cut with 50-50 balance)

•  β-balanced bisection (minimum cut with 70-30 balance)

•  cutsize/min{|A|,|B|}, or cutsize/(|A||B|) (expansion)

•  cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!

Networks and networked data

Interaction graph model of
networks:
•  Nodes represent “entities”
•  Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
•  technological networks

–  AS, power-grid, road networks
•  biological networks

–  food-web, protein networks
•  social networks

–  collaboration networks, friendships
•  information networks

–  co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

•  language networks
–  semantic networks...

•  ...

Social and Information Networks

Motivation: Sponsored (“paid”) Search
Text based ads driven by user specified query

The process:
•  Advertisers bids on query
phrases.

•  Users enter query phrase.
•  Auction occurs.

•  Ads selected, ranked,
displayed.

•  When user clicks,
advertiser pays!

Bidding and Spending Graphs

Uses of Bidding and Spending
graphs:
•  “deep” micro-market identification.

•  improved query expansion.

More generally, user segmentation
for behavioral targeting.

A “social network” with “term-document” aspects.

Micro-markets in sponsored search

10 million keywords

1.
4

M
ill

io
n

A
dv

er
tis

er
s

Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI of sports

gambling keywords?

Goal: Find isolated markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?

What do these networks “look” like?

The “lay of the land”

Spectral methods* - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas

*Comes with strong underlying theory to guide heuristics.

Comparison of “spectral” versus “flow”
Spectral:
•  Compute an eigenvector

•  “Quadratic” worst-case bounds

•  Worst-case achieved -- on “long
stringy” graphs

•  Worse-case is “local” property

•  Embeds you on a line (or Kn)

Flow:
•  Compute a LP

•  O(log n) worst-case bounds

•  Worst-case achieved -- on
expanders

•  Worst case is “global” property

•  Embeds you in L1

Two methods -- complementary strengths and weaknesses

•  What we compute is determined at least as much by as the
approximation algorithm as by objective function.

Explicit versus implicit geometry

Explicitly-
imposed
geometry
•  Traditional
regularization
uses explicit
norm constraint
to make sure
solution vector
is “small” and
not-too-complex

(X,d) (X’,d’)

x

y
d(x,y) f

f(x)

f(y)

Implicitly-imposed
geometry
•  Approximation algorithms
implicitly embed the data in a
“nice” metric/geometric place
and then round the solution.

Regularized and non-regularized communities (1 of 2)

•  Metis+MQI - a Flow-based method
(red) gives sets with better
conductance.

•  Local Spectral (blue) gives tighter
and more well-rounded sets.

External/internal conductance

Diameter of the cluster Conductance of bounding cut

Local Spectral

Connected

Disconnected

Lower is good

Regularized and non-regularized communities (2 of 2)
Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization, and already used in practice!

Computing locally-biased partitions

Often want clusters “near” a pre-specified set of nodes:
•  Large social graphs have good small clusters, don’t have good large clusters

•  Might have domain knowledge, so find “semi-supervised” clusters

•  As algorithmic primitives, e.g., to solve linear equations fast.

Recall global spectral graph partitioning

•  Relaxation of:
The basic optimization
problem:

•  Solvable via the eigenvalue
problem:

•  Sweep cut of second eigenvector
yields:

Idea to compute locally-biased partitions:
•  Modify this objective with a locality constraint
•  Show that some/all of these nice properties still hold locally

Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:
•  Find a cut well-correlated with
the seed vector s.

•  If s is a single node, this relaxes:

Interpretation:
•  Embedding a combination of
scaled complete graph Kn and
complete graphs T and T (KT and
KT) - where the latter encourage
cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)

Main theoretical results

Theorem: If x* is an optimal solution to LocalSpectral,

(*) it is a Generalized Personalized PageRank vector, and
can be computed as solution to a set of linear equations;

(*) one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*;

(*) For all sets of nodes T s.t. κ’ :=<s,sT>D
2 , we have: φ(T)

≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ) if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.

Fast running time
guarantee.

Illustration on small graphs
•  Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

•  Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)

Mahoney, Orecchia, and Vishnoi (2010)

A somewhat different approach

Strongly-local spectral methods
 ST04: truncated “local” random walks to compute locally-biased cut

 ACL06: approximate locally-biased PageRank vector computations

 Chung08: approximate heat-kernel computation to get a vector

These are the diffusion-based procedures
 that we saw before

 except truncate/round/clip/push small things to zero
 starting with localized initial condition

Also get provably-good local version of global spectral

What’s the connection?

“Optimization” approach:

•  Well-defined objective f

•  Weakly local (touch all
nodes), so good for medium-
scale problems

•  Easy to use

“Operational” approach*:

•  Very fast algorithm

•  Strongly local (clip/truncate
small entries to zero), good
for large-scale

•  Very difficult to use

* Informally, optimize f+λg (... almost formally!): steps are structurally-similar to the
steps of how, e.g., L1-regularized L2 regression algorithms, implement regularization

More importantly,

•  This “operational” approach is already being adopted in PODS/
VLDB/SIGMOD/KDD/WWW environments!

•  Let’s make the regularization explicit—and know what we compute!

Looking forward ...

A common modus operandi in many (really*) large-scale applications is:
•  Run a procedure that bears some resemblance to the procedure you
would run if you were to solve a given problem exactly

•  Use the output in a way similar to how you would use the exact solution,
or prove some result that is similar to what you could prove about the
exact solution.

BIG Question: Can we make this more principled? E.g., can we
“engineer” the approximations to solve (exactly but implicitly) some
regularized version of the original problem---to do large scale
analytics in a statistically more principled way?

*e.g., industrial production, publication venues like WWW, SIGMOD, VLDB, etc.

Conclusions to Part Two

Regularization is:
•  absent from CS, which historically has studied computation per se

•  central to nearly area that applies algorithms to noisy data

•  gets at the heart of the algorithmic-statistical “disconnect”
Approximate computation, in and of itself, can implicitly regularize:

•  Theory & the empirical signatures in matrix and graph problems

•  Solutions of approximation algorithms don’t need to be something we
“settle for,” they can be “better” than the “exact” solution

In very large-scale analytics applications:
•  Can we “engineer” database operations so “worst-case” approximation
algorithms exactly solve regularized versions of original problem?

•  I.e., can we get best of both worlds for very large-scale analytics?

Conclusions ... And Looking Forward
In many BIG data applications, “algorithmic” and
“statistical” perspectives interact in fruitful ways
•  Genetics: DNA SNP analysis --> choose columns from a matrix
•  Internet: Community finding --> partitioning a graph

Regularization lies at the heart of the algorithmic-
statistical disconnect
•  Absent from CS, but central to every area that computes on noisy data

•  Approximate computation, in and of itself, regularizes

Connections with BIG Information Theory?
•  What is information? What is data? What is signal? What is noise?
How to use these ideas in information theory?
•  You tell me ...

