Thomas Courtade

CSol Workshop on Big Data

Joint work with: Amir Ingber, Tsachy Weissman Also thanks to: Golan Yona, Sergio Verdú

March 19, 2013

Center for Science of Information NSF Science and Technology Center

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

- Introduction

The fundamental problem of communication is that of **reproducing at one point** either exactly or approximately **a message selected at another point**.

Claude E. Shannon, 1948

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Transmission of Information

In modern data processing, objective is often not *reproduction* of a message

Transmission of Information

In modern data processing, objective is often not *reproduction* of a message

Today:

- "Compression for Queries"
- Compression minimize space required to store database
- Compressed data does not represent the source itself but rather "some useful information about the source"

Compression	for	Queries
أخمر بالممسخصا		

Similarity Queries in Databases

Compression	for	Queries
	on	

Similarity Queries in Databases

Compression	for	Queries
	on	

Similarity Queries in Databases

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Applications

Any database with many long sequences and a similarity measure:

- Forensics: fingerprints
 - FBI: "Integrated automated fingerprint identification system (IAFIS)": data on more than 104M individuals $^{\rm 1}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

¹Source: www.fbi.gov/about-us/cjis/fingerprints_biometrics/iafis/iafis

²Source: NIH, www.ncbi.nlm.nih.gov/genbank.

³Source: Golan Yona, Dept. of Structural Biology, Stanford

Applications

Any database with many long sequences and a similarity measure:

- Forensics: fingerprints
 - FBI: "Integrated automated fingerprint identification system (IAFIS)": data on more than 104M individuals $^{\rm 1}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Bioinformatics: DNA sequences
 - GenBank: 200M sequences²
 - Biozon: 100M records (DNA, proteins and more)³

²Source: NIH, www.ncbi.nlm.nih.gov/genbank.

³Source: Golan Yona, Dept. of Structural Biology, Stanford

¹Source: www.fbi.gov/about-us/cjis/fingerprints_biometrics/iafis/iafis

Compression	for	Queries
	on	

Today: detect similarity based on compressed data:

- For each sequence x in the database, store only a very small signature T(x)
- Need to decide whether x and y are similar given only y, T(x)

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 三 のくで</p>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Compression	for	Querie
	on	

Similarity Queries on Compressed Data: Remarks

Not classical compression:

- Original data not reproducible from compressed version

- Compressed DB does not replace the DB

Similarity Queries on Compressed Data: Remarks

- Not classical compression:
 - Original data not reproducible from compressed version

- Compressed DB does not replace the DB

Beneficial when when access to full DB is costly, e.g. if

- stored on slower media
- stored in a remote location
- full DB is used by many different users

Similarity Queries on Compressed Data: Remarks

- Not classical compression:
 - Original data not reproducible from compressed version
 - Compressed DB does not replace the DB
- Beneficial when when access to full DB is costly, e.g. if
 - stored on slower media
 - stored in a remote location
 - full DB is used by many different users
- Queries answered w.r.t. compressed (i.e. partial) data are not always correct

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- False positive (FP)
- False negatives (FN)

Introduction

Compression

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆> < 豆</p>

- Introduction

Compression

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Goal: Given $f(\mathbf{x})$, generate $\hat{\mathbf{x}}$ which is similar to \mathbf{x} .

- (Nearly) Lossless Compression: $\Pr{\{\mathbf{X} \neq \hat{\mathbf{X}}\}} \rightarrow 0$
- Lossy Compression: $\mathbb{E}[d(\mathbf{X}, \hat{\mathbf{X}})] \leq D$

Similarity Detection

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Similarity Detection

 $\mathcal{T}: \mathcal{X}^n \to \{1, ..., 2^{nR}\}; \quad g: \{1, ..., 2^{nR}\} \times \mathcal{Y}^n \to \{\texttt{yes}, \texttt{no}\}$

- Goal: Given **y** and *T*(**x**), determine whether **x** and **y** are similar.
 - "**x** and **y** are similar" \Leftrightarrow $d(\mathbf{x}, \mathbf{y}) \leq D$
 - A good scheme (*T*, *g*): the function *g* is correct "most of the time"

What makes a scheme "good"?

The errors $g(\cdot, \cdot)$ can make:

- False positives (FP): $g(T(\mathbf{x}), \mathbf{y}) = \text{yes}$ when $d(\mathbf{x}, \mathbf{y}) > D$
- False negative (FN): $g(T(\mathbf{x}), \mathbf{y}) = \text{no when } d(\mathbf{x}, \mathbf{y}) \leq D$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Similarity Queries on Compressed Data

What makes a scheme "good"?

The errors $g(\cdot, \cdot)$ can make:

False positives (FP): $g(T(\mathbf{x}), \mathbf{y}) = \text{yes}$ when $d(\mathbf{x}, \mathbf{y}) > D$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

■ False negative (FN): $g(T(\mathbf{x}), \mathbf{y}) = \text{no when } d(\mathbf{x}, \mathbf{y}) \le D$ We focus on case where $\Pr{FN} = 0$.

- A FN causes an undetected error
- A FP does not incur an error per se, only increased computation / communication

Schemes with $Pr{FN} = 0$ are said to be *admissible*.

Similarity Queries on Compressed Data

What makes a scheme "good"?

The errors $g(\cdot, \cdot)$ can make:

False positives (FP): $g(T(\mathbf{x}), \mathbf{y}) = \text{yes}$ when $d(\mathbf{x}, \mathbf{y}) > D$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

■ False negative (FN): $g(T(\mathbf{x}), \mathbf{y}) = \text{no when } d(\mathbf{x}, \mathbf{y}) \le D$ We focus on case where $\Pr{FN} = 0$.

- A FN causes an undetected error
- A FP does not incur an error per se, only increased computation / communication

Schemes with $Pr{FN} = 0$ are said to be *admissible*.

 \Rightarrow no means no; and yes means maybe !

Similarity Queries on Compressed Data

What makes a scheme "good"?

The errors $g(\cdot, \cdot)$ can make:

False positives (FP): $g(T(\mathbf{x}), \mathbf{y}) = \text{yes}$ when $d(\mathbf{x}, \mathbf{y}) > D$

■ False negative (FN): $g(T(\mathbf{x}), \mathbf{y}) = \text{no when } d(\mathbf{x}, \mathbf{y}) \le D$ We focus on case where $\Pr{FN} = 0$.

- A FN causes an undetected error
- A FP does not incur an error per se, only increased computation / communication

Schemes with $Pr{FN} = 0$ are said to be *admissible*.

 \Rightarrow no means no; and yes means maybe !

 $g: \{1,...,2^{nR}\} imes \mathcal{Y}^n o \{\texttt{no},\texttt{maybe}\}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Goal: Control the false positive probability

Goal: Control the false positive probability

$$\begin{aligned} &\Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} \right\} \\ &= \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} | d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \\ &+ \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} | d(\mathbf{X}, \mathbf{Y}) > D \right\} \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) > D \right\} \end{aligned}$$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Goal: Control the false positive probability

$$\begin{aligned} &\Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} \right\} \\ &= \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} | d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \Pr \{ d(\mathbf{X}, \mathbf{Y}) \leq D \} \\ &+ \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} | d(\mathbf{X}, \mathbf{Y}) > D \right\} \Pr \{ d(\mathbf{X}, \mathbf{Y}) > D \} \\ &= (1 - \Pr \{ FN \}) \Pr \{ d(\mathbf{X}, \mathbf{Y}) \leq D \} \\ &+ \Pr \{ FP \} \Pr \{ d(\mathbf{X}, \mathbf{Y}) > D \} \end{aligned}$$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Goal: Control the false positive probability

$$\begin{aligned} &\Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} \right\} \\ &= \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} | d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \Pr \{ d(\mathbf{X}, \mathbf{Y}) \leq D \} \\ &+ \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \texttt{maybe} | d(\mathbf{X}, \mathbf{Y}) > D \right\} \Pr \{ d(\mathbf{X}, \mathbf{Y}) > D \} \\ &= (1 - \Pr \{ FN \}) \Pr \{ d(\mathbf{X}, \mathbf{Y}) \leq D \} \\ &+ \Pr \{ FP \} \Pr \{ d(\mathbf{X}, \mathbf{Y}) > D \} \\ &= \Pr \{ d(\mathbf{X}, \mathbf{Y}) \leq D \} + \Pr \{ FP \} \Pr \{ d(\mathbf{X}, \mathbf{Y}) > D \}. \end{aligned}$$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Goal: Control the false positive probability

$$\begin{aligned} &\Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \text{maybe} \right\} \\ &= \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \text{maybe} | d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \\ &+ \Pr \left\{ g(T(\mathbf{X}), \mathbf{Y}) = \text{maybe} | d(\mathbf{X}, \mathbf{Y}) > D \right\} \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) > D \right\} \\ &= (1 - \Pr \{FN\}) \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) \leq D \right\} \\ &+ \Pr \{FP\} \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) > D \right\} \\ &= \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) \leq D \right\} + \Pr \{FP\} \Pr \left\{ d(\mathbf{X}, \mathbf{Y}) > D \right\}. \end{aligned}$$

 $\Pr{g(T(\mathbf{X}), \mathbf{Y}) = \text{maybe}}$ minimized $\Leftrightarrow \Pr{FP}$ minimized

Similarity Queries on Compressed Data

$Pr\{g = maybe\}$: operational significance

 $T(\mathbf{x}) g(T(\mathbf{x}), \mathbf{y})$ y

$$\mathsf{Pr}\{\mathsf{FP}\} = \frac{6}{12}$$

$$\Pr\{g = maybe\} = \frac{10}{16}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Similarity Queries on Compressed Data

$Pr\{g = maybe\}$: operational significance

 $Pr\{g = maybe\}$: the fraction of sequences retrieved from database \Rightarrow a proxy for complexity of answering a query

Similarity Queries on Compressed Data

$Pr\{g = maybe\}$: operational significance

 $Pr\{g = maybe\}$: the fraction of sequences retrieved from database \Rightarrow a proxy for complexity of answering a query

We say that the query has been answered *reliably* if $Pr\{g = maybe\}$ is small.

Achievable Rates

$$\mathbf{X} \sim \text{i.i.d.} P_{\mathbf{X}}(\cdot), \mathbf{Y} \sim \text{i.i.d.} P_{\mathbf{Y}}(\cdot).$$

D is given (fixed) similarity threshold
- i.e. \mathbf{x}, \mathbf{y} similar means $d(\mathbf{x}, \mathbf{y}) \leq D$.

Definition

Rate *R* is said to be *D*-achievable if there exists a sequence of rate-*R* admissible schemes $\{T^{(n)}, g^{(n)}\}$, s.t.

$$\lim_{n o \infty} \mathsf{Pr}\left\{ g^{(n)}\left(\mathcal{T}^{(n)}({\mathsf{X}}), {\mathsf{Y}}
ight) = \mathtt{maybe}
ight\} = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Achievable Rates

$$\mathbf{X} \sim \text{i.i.d.} P_{\mathbf{X}}(\cdot), \mathbf{Y} \sim \text{i.i.d.} P_{\mathbf{Y}}(\cdot).$$

D is given (fixed) similarity threshold
- i.e. \mathbf{x}, \mathbf{y} similar means $d(\mathbf{x}, \mathbf{y}) \leq D$.

Definition

Rate *R* is said to be *D*-achievable if there exists a sequence of rate-*R* admissible schemes $\{T^{(n)}, g^{(n)}\}$, s.t.

$$\lim_{n o \infty} \Pr\left\{ g^{(n)}\left(\mathcal{T}^{(n)}(\mathbf{X}), \mathbf{Y}
ight) = extsf{maybe}
ight\} = 0.$$

Why does this model & definition make sense?

Identification Rate

Definition

For a similarity threshold D, the *identification rate* $R_{ID}(D)$ is the infimum of D-achievable rates. That is,

 $R_{\text{ID}}(D) \triangleq \inf\{R : R \text{ is } D \text{-achievable}\}.$

Identification Rate

Definition

For a similarity threshold D, the *identification rate* $R_{ID}(D)$ is the infimum of D-achievable rates. That is,

 $R_{\text{ID}}(D) \triangleq \inf\{R : R \text{ is } D \text{-achievable}\}.$

In other words, $R_{ID}(D)$ is a *fundamental limit*. It is the degree to which we can compress the data, while retaining the ability to reliably answer similarity queries.
Identification Exponent

If $R > R_{ID}(D)$, then $Pr\{g = maybe\}$ can be made arbitrarily small with *n*. How fast? (i.e., how precisely can we control the false-positive probability?)

Identification Exponent

If $R > R_{ID}(D)$, then $Pr\{g = maybe\}$ can be made arbitrarily small with *n*. How fast? (i.e., how precisely can we control the false-positive probability?)

Definition

Fix $R > R_{ID}(D)$. The *identification exponent* is defined as

$$\mathbf{E}_{\mathrm{ID}}(R) \triangleq \limsup_{n \to \infty} -\frac{1}{n} \log \Pr\left\{g^{(n)}\left(T^{(n)}(\mathbf{X}), \mathbf{Y}\right) = \mathtt{maybe}\right\}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $g^{(n)}, T^{(n)}$: optimal schemes at rate R and length n.

Identification Exponent

If $R > R_{ID}(D)$, then $Pr\{g = maybe\}$ can be made arbitrarily small with *n*. How fast? (i.e., how precisely can we control the false-positive probability?)

Definition

Fix $R > R_{ID}(D)$. The *identification exponent* is defined as

$$\mathbf{E}_{\mathrm{ID}}(R) \triangleq \limsup_{n \to \infty} -\frac{1}{n} \log \Pr\left\{g^{(n)}\left(\mathcal{T}^{(n)}(\mathbf{X}), \mathbf{Y}\right) = \mathtt{maybe}\right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $g^{(n)}, T^{(n)}$: optimal schemes at rate R and length n.

Can also pursue other directions

e.g., finite blocklength bounds

Similarity Queries on Compressed Data

Quadratic-Gaussian

The Quadratic-Gaussian case

- Quadratic distortion: $d(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} ||\mathbf{x} \mathbf{y}||^2$
- Gaussian source: X ~ N(0, Iσ²), Y ~ N(0, Iσ²); X, Y independent.

QG: the Identification Rate

Theorem (Ingber, Courtade, Weissman, DCC 2013)

Suppose $\mathbf{X} \sim N(0, I\sigma^2)$, $\mathbf{Y} \sim N(0, I\sigma^2)$; \mathbf{X}, \mathbf{Y} independent. Then

$$R_{\mathrm{ID}}(D) = \left\{ egin{array}{ll} \log\left(rac{1}{1-rac{D}{2\sigma^2}}
ight) & ext{ for } D < 2\sigma^2 \ \infty & ext{ for } D \geq 2\sigma^2. \end{array}
ight.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Quadratic-Gaussian Case: Discussion

$$R_{\rm ID}(D) = \begin{cases} \log\left(\frac{1}{1-\frac{D}{2\sigma^2}}\right) & \text{for } D < 2\sigma^2 \\ \infty & \text{for } D \ge 2\sigma^2. \end{cases}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Quadratic-Gaussian Case: Discussion

$$R_{\rm ID}(D) = \begin{cases} \log\left(\frac{1}{1-\frac{D}{2\sigma^2}}\right) & \text{for } D < 2\sigma^2\\ \infty & \text{for } D \ge 2\sigma^2. \end{cases}$$

■ If
$$D > 2\sigma^2$$
,
⇒ **X** and **Y** are naturally similar! [i.e. $d(\mathbf{X}, \mathbf{Y}) \leq D$ w.h.p.]
⇒ $R_{\text{ID}}(D) = \infty$,

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Quadratic-Gaussian Case: Discussion

$$R_{\rm ID}(D) = \begin{cases} \log\left(\frac{1}{1-\frac{D}{2\sigma^2}}\right) & \text{for } D < 2\sigma^2 \\ \infty & \text{for } D \ge 2\sigma^2. \end{cases}$$

- If $D > 2\sigma^2$, ⇒ **X** and **Y** are naturally similar! [i.e. $d(\mathbf{X}, \mathbf{Y}) \leq D$ w.h.p.] ⇒ $R_{\text{ID}}(D) = \infty$,
- If D → 0, then asking "are x, y similar?" is like asking whether x = y, so very little information is required to rule out most of the x's

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Quadratic-Gaussian Case: Discussion

$$R_{\rm ID}(D) = \begin{cases} \log\left(\frac{1}{1-\frac{D}{2\sigma^2}}\right) & \text{for } D < 2\sigma^2 \\ \infty & \text{for } D \ge 2\sigma^2. \end{cases}$$

■ If
$$D > 2\sigma^2$$
,
⇒ **X** and **Y** are naturally similar! [i.e. $d(\mathbf{X}, \mathbf{Y}) \leq D$ w.h.p.]
⇒ $R_{\text{ID}}(D) = \infty$,

- If D → 0, then asking "are x, y similar?" is like asking whether x = y, so very little information is required to rule out most of the x's
- Similarity to classic rate distortion:

$$R(D) = \begin{cases} \frac{1}{2} \log\left(\frac{\sigma^2}{D}\right) & \text{for } D < \sigma^2 \\ 0 & \text{for } D \ge \sigma^2. \end{cases}$$

Similarity Queries on Compressed Data

— Quadratic-Gaussian

Identification Rate vs Rate-Distortion

Figure: The rate distortion function R(D) and the identification rate $R_{\rm ID}(D)$ of a Gaussian source with variance σ^2 .

QG Identification Exponent

Theorem (Ingber, Courtade, Weissman, DCC 2013) Suppose $\mathbf{X} \sim N(0, I\sigma^2)$, $\mathbf{Y} \sim N(0, I\sigma^2)$; \mathbf{X}, \mathbf{Y} independent. Then for $R > R_{\text{ID}}(D)$,

$$\mathbf{E}_{\mathrm{ID}}(R) = \\ \min_{\rho \in (0,1]} 2\mathbf{E}_{Z}(\rho) - \log \sin \min \left[\sin^{-1}(2^{-R}) + \cos^{-1} \frac{\rho - \frac{D}{2\sigma^{2}}}{\rho}, \frac{\pi}{2} \right]$$

where $\mathbf{E}_{Z}(\rho) \triangleq \frac{1}{\ln 2} \left[\frac{\rho}{2} - \frac{1}{2} - \frac{1}{2} \ln \rho \right].$

・ロト ・ 直 ・ ・ 目 ・ ・ 目 ・ うへぐ

QG Identification Exponent: Discussion

$$\mathbf{E}_{\mathrm{ID}}(R) = \min_{\rho \in [0,1]} 2\mathbf{E}_{Z}(\rho) - \log \sin \min \left[\sin^{-1}(2^{-R}) + \cos^{-1} \frac{\rho - \frac{D}{2\sigma^{2}}}{\rho}, \frac{\pi}{2} \right]$$

QG Identification Exponent: Discussion

$$\mathbf{E}_{\mathrm{ID}}(R) = \min_{\rho \in (0,1]} 2\mathbf{E}_{Z}(\rho) - \log \sin \min \left[\sin^{-1}(2^{-R}) + \cos^{-1} \frac{\rho - \frac{D}{2\sigma^{2}}}{\rho}, \frac{\pi}{2} \right]$$

 \blacksquare Only scalar minimization w.r.t. $\rho \Rightarrow$ easily computed

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

QG Identification Exponent: Discussion

$$\mathbf{E}_{\mathrm{ID}}(R) = \min_{\rho \in (0,1]} 2\mathbf{E}_{Z}(\rho) - \log \sin \min \left[\sin^{-1}(2^{-R}) + \cos^{-1} \frac{\rho - \frac{D}{2\sigma^{2}}}{\rho}, \frac{\pi}{2} \right]$$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

• Only scalar minimization w.r.t. $\rho \Rightarrow$ easily computed • $\mathbf{E}_{ID}(R_{ID}(D)) = 0$, as expected

QG Identification Exponent: Discussion

$$\mathbf{E}_{\mathrm{ID}}(R) = \min_{\rho \in (0,1]} 2\mathbf{E}_{Z}(\rho) - \log \sin \min \left[\sin^{-1}(2^{-R}) + \cos^{-1} \frac{\rho - \frac{D}{2\sigma^{2}}}{\rho}, \frac{\pi}{2} \right]$$

- \blacksquare Only scalar minimization w.r.t. $\rho \Rightarrow$ easily computed
- $E_{ID}(R_{ID}(D)) = 0$, as expected
- lim_{R→∞} E_{ID}(R) is given by the exponential decay factor of the event {d(X, Y) ≤ D}.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Similarity Queries on Compressed Data

Quadratic-Gaussian

$\mathbf{E}_{\mathrm{ID}}(R)$ for $R_{\mathrm{ID}}(D) = 2$ bits/sym

Different Variance

Suppose $\mathbf{X} \sim N(0, I\sigma_X^2)$, $\mathbf{Y} \sim N(0, I\sigma_Y^2)$; \mathbf{X}, \mathbf{Y} independent. Then

Theorem

$$R_{\rm ID}(D, \sigma_X^2, \sigma_Y^2) = \begin{cases} \log \frac{2\sigma_X \sigma_Y}{\sigma_X^2 + \sigma_Y^2 - D} & \text{for } D < \sigma_X^2 + \sigma_Y^2 \\ \infty & \text{for } D \ge \sigma_X^2 + \sigma_Y^2 \end{cases}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Different Variance

Suppose $\mathbf{X} \sim N(0, I\sigma_X^2)$, $\mathbf{Y} \sim N(0, I\sigma_Y^2)$; \mathbf{X}, \mathbf{Y} independent. Then

Theorem

$$R_{\rm ID}(D, \sigma_X^2, \sigma_Y^2) = \begin{cases} \log \frac{2\sigma_X \sigma_Y}{\sigma_X^2 + \sigma_Y^2 - D} & \text{for } D < \sigma_X^2 + \sigma_Y^2 \\ \infty & \text{for } D \ge \sigma_X^2 + \sigma_Y^2 \end{cases}$$

Theorem

For $R > R_{\rm ID}(D, \sigma_X^2, \sigma_Y^2)$, $\mathbf{E}_{\rm ID}(R) = \min_{\rho_X, \rho_Y > 0} \mathbf{E}_Z(\rho_X) + \mathbf{E}_Z(\rho_Y)$ $-\log \sin \min \left[\sin^{-1}(2^{-R}) + \cos^{-1} \frac{\rho_X \sigma_X^2 + \rho_Y \sigma_Y^2 - D}{2\sigma_X \sigma_Y \sqrt{\rho_X \rho_Y}}, \frac{\pi}{2} \right]$

Similarity Queries on Compressed Data

General Sources, Quadratic Distortion

General Sources: Achievable Rate

Theorem

X and **Y** independent, \sim i.i.d. P_X , finite second moment. Then

$$R_{ ext{ID}}(D) \leq \inf_{P_{\hat{X}|X}} I(X; \hat{X})$$

inf is w.r.t. all test channels $\mathsf{P}_{\hat{X}|X}$ satisfying

$$\sqrt{\mathbb{E}_{P_X\otimes P_{\hat{X}}}(X-\hat{X})^2} \ \geq \sqrt{\mathbb{E}_{P_{X,\hat{X}}}(X-\hat{X})^2} + \sqrt{D}$$

・ロト ・ 直 ・ ・ 目 ・ ・ 目 ・ うへぐ

Similarity Queries on Compressed Data

General Sources, Quadratic Distortion

General Sources: About the Result

 ■ Works for any d(·, ·) that satisfies the *triangle inequality* A version exists for general d(·, ·)
 ■ Easily extended to different P_X, P_Y

Similarity Queries on Compressed Data

General Sources, Quadratic Distortion

General Sources: About the Result

■ Works for any d(·, ·) that satisfies the *triangle inequality* A version exists for general d(·, ·)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Easily extended to different P_X, P_Y
- Similar in spirit to [Ahlswede, Yang, Zhang '93]
 study a related problem

Similarity Queries on Compressed Data

└─ Gaussian as an Extreme Case

Gaussian as an Extreme Case

Classical lossy source coding: *among all sources with the same variance, the Gaussian is the hardest to compress.*

Gaussian as an Extreme Case

Classical lossy source coding: *among all sources with the same variance, the Gaussian is the hardest to compress.* In our case:

Theorem

If X is a random variable with finite variance σ^2 , then

$$R_{ID}(D) \leq \log\left(rac{1}{1-rac{D}{2\sigma^2}}
ight),$$

i.e. a Gaussian source X requires the largest identification rate for a given variance.

Gaussian as an Extreme Case: Proof #1

Take a distribution P_X (assume E[X] = 0). Then $R_{\text{ID}}(D) \leq \inf_{P_{\hat{X}|X}} I(X; \hat{X})$, where inf is w.r.t. $P_{\hat{X}|X}$ s.t. $\sqrt{\mathbb{E}_{P_X \otimes P_{\hat{X}}}(X - \hat{X})^2} \geq \sqrt{\mathbb{E}_{P_{X,\hat{X}}}(X - \hat{X})^2} + \sqrt{D}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gaussian as an Extreme Case: Proof #1

Take a distribution P_X (assume E[X] = 0). Then $R_{\text{ID}}(D) \leq \inf_{P_{\hat{X}|X}} I(X; \hat{X})$, where inf is w.r.t. $P_{\hat{X}|X}$ s.t. $\sqrt{\mathbb{E}_{P_X \otimes P_{\hat{X}}}(X - \hat{X})^2} \geq \sqrt{\mathbb{E}_{P_{X,\hat{X}}}(X - \hat{X})^2} + \sqrt{D}$.

Choose a channel $P_{\hat{X}|X}$: $\hat{X} = \rho X + Z$; $Z \sim N(0, \sigma_Z^2)$, ind. of X, and

$$\rho = \frac{(4\sigma^2 - D)}{(2\sigma^2)}; \quad \sigma_Z^2 = \frac{(4\sigma^2 - D)(2\sigma^2 - D)^2}{4\sigma^2 D}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Constraints on $P_{\hat{X}|X}$ are satisfied.

Gaussian as an Extreme Case: Proof #1

Take a distribution P_X (assume E[X] = 0). Then $R_{\text{ID}}(D) \leq \inf_{P_{\hat{X}|X}} I(X; \hat{X})$, where inf is w.r.t. $P_{\hat{X}|X}$ s.t. $\sqrt{\mathbb{E}_{P_X \otimes P_{\hat{X}}}(X - \hat{X})^2} \geq \sqrt{\mathbb{E}_{P_{X,\hat{X}}}(X - \hat{X})^2} + \sqrt{D}$.

Choose a channel $P_{\hat{X}|X}$: $\hat{X} = \rho X + Z$; $Z \sim N(0, \sigma_Z^2)$, ind. of X, and

$$\rho = \frac{(4\sigma^2 - D)}{(2\sigma^2)}; \quad \sigma_Z^2 = \frac{(4\sigma^2 - D)(2\sigma^2 - D)^2}{4\sigma^2 D}.$$

Constraints on $P_{\hat{X}|X}$ are satisfied.

$$VAR[\hat{X}] = \rho^2 \sigma^2 + \sigma_Z^2 \Rightarrow$$
$$I(X; \hat{X}) = h(\hat{X}) - h(\hat{X}|X) \le \frac{1}{2} \log \frac{\rho^2 \sigma^2 + \sigma_Z^2}{\sigma_Z^2} = \log \frac{1}{1 - D/(2\sigma^2)}$$

[since Gaussian maximizes diff. entropy for a given variance]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A Universal Scheme [+ Proof #2]

A scheme, that for any P_X , attains $R_{\rm ID}$ of a Gaussian:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A Universal Scheme [+ Proof #2]

A scheme, that for any P_X , attains R_{ID} of a Gaussian:

Assume $n = 2^{\ell}$. Let

$$\mathbb{X} = [\mathbf{X}(1), \mathbf{X}(2), \dots, \mathbf{X}(n)].$$

Now define

$$[\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \dots, \tilde{\mathbf{X}}(n)] = [\mathbf{X}(1), \mathbf{X}(2), \dots, \mathbf{X}(n)] \times H_{\ell}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 H_{ℓ} : a Hadamard matrix of order $n = 2^{\ell}$. Do the same with $\tilde{\mathbf{Y}}(i)$.

A Universal Scheme [+ Proof #2]

A scheme, that for any P_X , attains R_{ID} of a Gaussian:

Assume $n = 2^{\ell}$. Let

$$\mathbb{X} = [\mathbf{X}(1), \mathbf{X}(2), \dots, \mathbf{X}(n)].$$

Now define

$$[\mathbf{\tilde{X}}(1),\mathbf{\tilde{X}}(2),\ldots,\mathbf{\tilde{X}}(n)] = [\mathbf{X}(1),\mathbf{X}(2),\ldots,\mathbf{X}(n)] \times H_{\ell}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 H_{ℓ} : a Hadamard matrix of order $n = 2^{\ell}$. Do the same with $\tilde{\mathbf{Y}}(i)$.

- As *n* grows, the elements of each $\tilde{\mathbf{X}}(i)$ become Gaussian (CLT)
- The columns of X remain independent!
- Apply a length-*n* Gaussian scheme on each $\tilde{\mathbf{X}}(i)$.
- Union bound \rightarrow vanishing $Pr\{g = maybe\}!$

A Universal Scheme [+ Proof #2]

A scheme, that for any P_X , attains R_{ID} of a Gaussian:

Assume $n = 2^{\ell}$. Let

$$\mathbb{X} = [\mathbf{X}(1), \mathbf{X}(2), \dots, \mathbf{X}(n)].$$

Now define

$$[\mathbf{\tilde{X}}(1),\mathbf{\tilde{X}}(2),\ldots,\mathbf{\tilde{X}}(n)] = [\mathbf{X}(1),\mathbf{X}(2),\ldots,\mathbf{X}(n)] \times H_{\ell}$$

 H_{ℓ} : a Hadamard matrix of order $n = 2^{\ell}$. Do the same with $\tilde{\mathbf{Y}}(i)$.

- As *n* grows, the elements of each $\tilde{\mathbf{X}}(i)$ become Gaussian (CLT)
- The columns of **X** remain independent!
- Apply a length-*n* Gaussian scheme on each $\tilde{\mathbf{X}}(i)$.
- Union bound \rightarrow vanishing $\Pr\{g = maybe\}!$

More than just another proof – this provides a scheme which is minimax optimal w.r.t. all sources with variance σ^2 .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Compression for Queries Similarity Queries on Compressed Data Symmetric Binary-Hamming

The Symmetric Binary-Hamming case

Suppose $\bm{X}, \bm{Y} \sim \mathrm{Ber}(\frac{1}{2})$ and distance is measured under Hamming distortion

Theorem

$$egin{aligned} R_{ ext{ID}}(D) &= 1 - h\left(rac{1}{2} - D
ight) \ &= D^2 \cdot 2\log e + o(D^2) \end{aligned}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $h(\cdot)$: binary entropy function
- Classic rate distortion: R(D) = 1 h(D)

Similarity Queries on Compressed Data

General DMS and Hamming Loss

General Sources under Hamming Distortion

Theorem

If \mathbf{X}, \mathbf{Y} are both drawn i.i.d. according to P_X and similarity is measured under Hamming loss,

 $R_{\mathrm{ID}}(D) \geq D^2 \cdot 2 \log e.$

Similarity Queries on Compressed Data

General DMS and Hamming Loss

General Sources under Hamming Distortion

Theorem

If \mathbf{X}, \mathbf{Y} are both drawn i.i.d. according to P_X and similarity is measured under Hamming loss,

 $R_{\mathrm{ID}}(D) \geq D^2 \cdot 2 \log e.$

• For $P_X = Ber(\frac{1}{2})$, recall $R_{ID}(D) = D^2 \cdot 2 \log e + o(D^2)$.

Similarity Queries on Compressed Data

General DMS and Hamming Loss

General Sources under Hamming Distortion

Theorem

If \mathbf{X}, \mathbf{Y} are both drawn i.i.d. according to P_X and similarity is measured under Hamming loss,

 $R_{\mathrm{ID}}(D) \geq D^2 \cdot 2 \log e.$

- For $P_X = \operatorname{Ber}(\frac{1}{2})$, recall $R_{\operatorname{ID}}(D) = D^2 \cdot 2 \log e + o(D^2)$.
- ⇒ Ber(¹/₂) is nearly "easiest" to compress (in interesting regime of small *D*) of *all* sources when distortion measured under Hamming loss.

Similarity Queries on Compressed Data

General DMS and Hamming Loss

General Sources under Hamming Distortion

Theorem

If \mathbf{X}, \mathbf{Y} are both drawn i.i.d. according to P_X and similarity is measured under Hamming loss,

 $R_{\mathrm{ID}}(D) \geq D^2 \cdot 2 \log e.$

- For $P_X = \operatorname{Ber}(\frac{1}{2})$, recall $R_{\operatorname{ID}}(D) = D^2 \cdot 2 \log e + o(D^2)$.
- ⇒ Ber(¹/₂) is nearly "easiest" to compress (in interesting regime of small *D*) of *all* sources when distortion measured under Hamming loss.
- Stark contrast to Quadratic-Gaussian setting!

- Isoperimetric Inequalities

Towards a general $R_{\text{ID}}(D)$:

So far, we saw several examples:

- Quadratic-Gaussian
- Quadratic-general
- Symmetric Binary-Hamming
- General DMS & Hamming
- DMS (results depend on an aux. RV with unbounded card.)
- Isoperimetric Inequalities

Towards a general $R_{\text{ID}}(D)$:

So far, we saw several examples:

- Quadratic-Gaussian
- Quadratic-general
- Symmetric Binary-Hamming
- General DMS & Hamming
- DMS (results depend on an aux. RV with unbounded card.)

Why no general solution?

Isoperimetric Inequalities

Identification schemes as Quantizers

Identification schemes as Quantizers

- Size of quantization cell $\propto \Pr(T(\mathbf{X}) = i) \approx 2^{-nR}$ (symmetry)
- **Expanded quantization cells:** $\{y : d(x, y) \le D \text{ for some } x \text{ in cell}\}$
- $Pr(maybe) \propto size of expanded cell$

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Isoperimetric Inequalities

Identification schemes as Quantizers

Identification schemes as Quantizers

- Size of quantization cell $\propto \Pr(T(\mathbf{X}) = i) \approx 2^{-nR}$ (symmetry)
- **Expanded quantization cells:** $\{\mathbf{y} : d(\mathbf{x}, \mathbf{y}) \leq D \text{ for some } \mathbf{x} \text{ in cell}\}\$
- Pr(maybe) ∝ size (i.e., measure) of expanded cell

Isoperimetric Inequalities

Lentification schemes as Quantizers

Toward a converse:

Need to minimize size of expanded cell, for a given size of base cell

- A set A, its expansion $\Gamma^D(A)$
- What set A minimizes $|\Gamma^D(A)|$ for a fixed |A|?

Isoperimetric Inequalities

└─ Identification schemes as Quantizers

Toward a converse:

Need to minimize size of expanded cell, for a given size of base cell

- A set A, its expansion $\Gamma^D(A)$
- What set A minimizes $|\Gamma^D(A)|$ for a fixed |A|?
- \Rightarrow an Isoperimetric Inequality! What domain? The typical set!
 - Where the probability is uniform
 - Contains most of the probability mass

Isoperimetric Inequalities

Different Isoperimetric Inequalities

Isoperimetric Inequality in \mathbb{R}^2 , Euclidean distance

 $|\Gamma^{D}(A)|$ minimized when A is a **sphere**

- Isoperimetric Inequalities

Different Isoperimetric Inequalities

Different Isoperimetric Inequalities

Domain	$d(\cdot, \cdot)$	Minimizer	When	Converse for
\mathbb{R}^n	Euclidean	<i>n</i> -sphere	late 1800's	-

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Isoperimetric Inequalities

Different Isoperimetric Inequalities

Different Isoperimetric Inequalities

Domain	$d(\cdot, \cdot)$	Minimizer	When	Converse for
\mathbb{R}^n	Euclidean	<i>n</i> -sphere	late 1800's	-
<i>n</i> -dim. spherical shell	Euclidean/ Geodesic	Spherical cap	Levy '51	Quadratic-Gaussian

- Isoperimetric Inequalities

Different Isoperimetric Inequalities

Different Isoperimetric Inequalities

Domain	$d(\cdot, \cdot)$	Minimizer	When	Converse for
\mathbb{R}^{n}	Euclidean	<i>n</i> -sphere	late 1800's	-
n-dim. spherical	Euclidean/	Spherical cap	Levy '51	Quadratic-Gaussian
shell	Geodesic			
Binary	Hamming	Hamming ball	Harper '66	Symmetric
hypercube				Binary-Hamming

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Isoperimetric Inequalities

Different Isoperimetric Inequalities

Different Isoperimetric Inequalities

Domain	$d(\cdot, \cdot)$	Minimizer	When	Converse for
\mathbb{R}^{n}	Euclidean	<i>n</i> -sphere	late 1800's	-
<i>n</i> -dim. spherical	Euclidean/	Spherical cap	Levy '51	Quadratic-Gaussian
shell	Geodesic			
Binary	Hamming	Hamming ball	Harper '66	Symmetric
hypercube				Binary-Hamming
<i>r</i> -sets	Hamming	restricted	-	General
		Hamming ball ?		Binary-Hamming
Type class	general	cond. type class	_	DMS and
		(" <i>V</i> -shell")?		general $d(\cdot, \cdot)$

Isoperimetric Inequalities

Different Isoperimetric Inequalities

Different Isoperimetric Inequalities

Domain	$d(\cdot, \cdot)$	Minimizer	When	Converse for
\mathbb{R}^{n}	Euclidean	<i>n</i> -sphere	late 1800's	-
<i>n</i> -dim. spherical	Euclidean/	Spherical cap	Levy '51	Quadratic-Gaussian
shell	Geodesic			
Binary	Hamming	Hamming ball	Harper '66	Symmetric
hypercube				Binary-Hamming
<i>r</i> -sets	Hamming	restricted	-	General
		Hamming ball ?		Binary-Hamming
Type class	general	cond. type class	_	DMS and
		("V-shell")?		general $d(\cdot, \cdot)$

- \Rightarrow an isoperimetric inequality implies a converse
 - Might be too much to ask for
 - But known in several special cases...

Summary

Compression for similarity queries

 Compression for purpose of answering queries reliably, rather than reproducing data

Summary

Compression for similarity queries

 Compression for purpose of answering queries reliably, rather than reproducing data

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

■ Reliability ≜ vanishing probability of false positive, zero probability of false negative

Summary

Compression for similarity queries

 Compression for purpose of answering queries reliably, rather than reproducing data

- Reliability ≜ vanishing probability of false positive, zero probability of false negative
- Quantities of interest: Identification rate and exponent

Summary

Compression for similarity queries

- Compression for purpose of answering queries reliably, rather than reproducing data
- Reliability ≜ vanishing probability of false positive, zero probability of false negative
- Quantities of interest: Identification rate and exponent
 - Complete solution for quadratic-Gaussian, symmetric binary-Hamming

Summary

Compression for similarity queries

- Compression for purpose of answering queries reliably, rather than reproducing data
- Reliability ≜ vanishing probability of false positive, zero probability of false negative
- Quantities of interest: Identification rate and exponent
 - Complete solution for quadratic-Gaussian, symmetric binary-Hamming
 - Achievability result for general sources, similarity metrics

Summary

Compression for similarity queries

- Compression for purpose of answering queries reliably, rather than reproducing data
- Reliability ≜ vanishing probability of false positive, zero probability of false negative
- Quantities of interest: Identification rate and exponent
 - Complete solution for quadratic-Gaussian, symmetric binary-Hamming
 - Achievability result for general sources, similarity metrics

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

"Universal" lower bound for Hamming loss

Summary

Compression for similarity queries

- Compression for purpose of answering queries reliably, rather than reproducing data
- Reliability ≜ vanishing probability of false positive, zero probability of false negative
- Quantities of interest: Identification rate and exponent
 - Complete solution for quadratic-Gaussian, symmetric binary-Hamming
 - Achievability result for general sources, similarity metrics
 - "Universal" lower bound for Hamming loss
 - A matching converse: implied by an appropriate isoperimetric inequality

Compression	for	Queries
Summary		

What's next?

Theory

- Close the gap in the general case
- Extensions: X, Y non-i.i.d., but satisfying sparsity constraints

<ロト < 団ト < 豆ト < 豆ト = 三 の < 0</p>

Compression	for	Queries
Summary		

What's next?

Theory

- Close the gap in the general case
- Extensions: X, Y non-i.i.d., but satisfying sparsity constraints

Applications:

- Quadratic-Gaussian: spherical codes, lattices, wrapping
- Symmetric Binary-Hamming: LDGM codes (already working on this...)

Bioinformatics (with Golan Yona, Stanford)

Compression	for	Queries
Summary		

What's next?

Theory

- Close the gap in the general case
- Extensions: X, Y non-i.i.d., but satisfying sparsity constraints
- Applications:
 - Quadratic-Gaussian: spherical codes, lattices, wrapping
 - Symmetric Binary-Hamming: LDGM codes (already working on this...)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bioinformatics (with Golan Yona, Stanford)

THANKS!