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• Single electrode 

 

 

 
 

• Multiple electrodes 

Multiple Neural Data 

From (Su et al., J. Neurosci., 21: 4173-4182, 2001) 

CA1 pyramidal neuron in rat 

http://hirnforschung.kyb.mpg.de/uploads/pics/EN_M1_clip_image002_03.jpg


Wave Propagation: LFPs 

Rubino, Hatsopoulos, “Propagating waves Mediate Info Transmission in Motor Cortex”, Nature Neuroscience, 2006 

Takahashi, Saleh, Penn, Hatsopoulos, “Propagating waves in human motor cortex”, Frontiers in Human Neuroscience, 2011 
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Wave Propagation: Spikes 

? 
Q: Do action potentials mediating inter-cellular communication demonstrate spatio-temporal 

patterning consistent with wave propagation? 
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Beyond Correlation: Causation 

Idea: map a set of M time series to a directed graph with M nodes where an edge 
is placed from a to b if the past of a has an impact on the future of b 

How do we quantitatively do this in a general purpose manner? 
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Revisiting Granger’s viewpoint from 30,000 ft 
We say that X is causing Y if we are better able to predict the future of Y using all available 

information than if the information apart from the past of X had been used 

Quinn, Kiyavash, N. Hatsopoulos, TPC, J. Computational Neuroscience, 2010 

? 

1.Sequential predictors: beliefs 
2.Log loss: 
3.Better: 

•Granger causality is a special case 
•Applicable to any modality (point processes) 
•Can build efficient estimators w/ standard statistical assumptions 



• Shoulder and elbow 
movements in horizontal 
plane 

• Monkey: random-target 
pursuit task.  

 

• Recorded ensemble neural 
processes in MI 

• Spacing: 400 um 

• ~96 LFPs, ~110 neurons 

 

Experimental Paradigm 

visual 

target 



Causal Networks Before/After Cues 

S. Kim, K. Takahashi, N. Hatsopoulos, and TPC, "Information Transfer Between Neurons in the Motor Cortex 

Triggered by Visual Cues", IEEE Engineering in Medicine and Biology Society Annual Conference, Sep 2011. 

Pre: [-100 to 50ms] Cue: [50 to 200ms] Aft: [200 to 350ms] 

…
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Causal Interaction: Strength, 
Direction, Distance 

K. Takahashi, S. Kim, TPC, and N. Hatsopoulos, "Large-scale spike sequencing associated with wave  

propagation in motor cortex ", in preparation. 
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K. Takahashi, S. Kim, TPC, and N. Hatsopoulos, "Large-scale spike sequencing associated with wave  

propagation in motor cortex ", in preparation. 



Dynamics of the Dynamics? 

static model, 

continuous-valued data 

non-static model, any modality 

(Conventional) 

(Proposed) 
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Old 

Pros: Finite-dimensional learning problem  
Cons: a static graph 
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Prediction w Expert Advice 

For each round t = 1, 2,…, T 

1. Expert specified by -> pt
 

2. Predictor combines advice pt
  

along with  y1,…, yt-1  to choose pt 

3. Environment reveals yt 

4. Predictor p incurs loss l(pt,yt),                 

      Expert  incurs loss l(pt
,yt) 

 

Experts 



Good Sequential Predictors 
• Regret   

 

 

•   

•  “Good” predictor: if 2 and 4 recently did well, their 
advice is emphasized  
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Attains minimax regret under 
 Jeffrey’s prior 



• A map Sy “pushes forward” prior to posterior 

Bayesian Inference with Optimal Maps 



Finding the optimal map 



Finding the optimal map 



Finding the optimal map 

Hard 

(non-convex) 



Finding the optimal map Theorem [Kim, Mesa, TPC ‘12]. If prior p() and 
likelihood p(y|) are log-concave in , then 
calculating posterior  p( |y) is a convex 
optimization problem 

 

 

 



Finding the optimal map 

Easy 

(convex, but 
1-dim) 

Theorem [Kim, Mesa, TPC ‘12]. If prior p() and 
likelihood p(y|) are log-concave in , then 
calculating posterior  p( |y) is a 1-dimensional 
convex optimization problem 
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Finding the optimal map 

Easy 

(convex) 

Polynomial 

Chaos 

expansion 



Finding the optimal map 

Easy 

(convex) 

Polynomial 

Chaos 

expansion 

Theorem [Kim, Mesa, TPC ‘12]. If prior p() and 
likelihood p(y|) are log-concave in , then 
calculating posterior  p( |y) is an easy (finite-
dimensional) convex optimization problem 

 

 

 



Punchline 
– KL divergence  minimization: 

 

 

– Monotonicity of optimal solution to optimal transport problem 

 
 

 

 

– Wiener-Askey polynomial chaos expansion: 

 

 

 

 

 



Interesting Connection to Big Data 

Highly scalable algorithms for large-scale covariance estimation  



Discussion 
• Theorem applicable to any Bayesian inference 

problem where log-concavity assumptions hold 

– all exponential families 

– GLMs (used extensively in neuroscience): Jeffrey’s 
prior is log-concave 

• Polynomial chaos expansion wrt prior enabls 
closed form computation of posterior moments 

 

• Comparison to Markov chain Monte carlo 

– Only sampling points from the prior! 



Back to Neuroscience 



Time-Varying Causality 

Pre: [-100 to 50ms] Cue: [50 to 200ms] Aft: [200 to 350ms] 
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• Time-invariant case 

 

 

 

 
 

• Time-varying case 
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Direction of Time-Varying Causality 

visual cue 
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TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAAA 

Thank You! 
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