
1/45!

©  July 13, 2010 , P. R. Kumar !

A System-Theoretic Clean Slate
Approach to Secure Protocols for
Wireless Networks!
!
Jonathan Ponniah!
Yih-Chun Hu!
P. R. Kumar!
 !
!
!
Dept. of Electrical and Computer Engineering!
Texas A&M University!

Email: prk@tamu.edu  
Web: http://cesg.tamu.edu/faculty/p-r-kumar/	

!
CSoI Big Data Workshop!
March 18-20, 2013!
Honolulu!

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License.!
See http://creativecommons.org/licenses/by-nc-nd/3.0/!

2/45!

©  July 13, 2010 , P. R. Kumar !

!

!
!

•  Packets possibly multi-hop from sources to destinations!
•  Require no pre-existing infrastructure!
•  No centralized controller!
•  Distributed decision making: Nodes themselves determine

power levels, transmit times, routes, schedules!
•  Require multiple protocols to operate!
!
!

Focus: Ad hoc multi-hop wireless networks!

3/45!

©  July 13, 2010 , P. R. Kumar !

Motivation !
  Usual approach, including in wireless networks, has been!

–  Develop protocols for good performance!
  Then!

–  Some ATTACK is identified!
–  A DEFENSE is developed for that attack!
–  Then another ATTACK is identified!
–  Another DEFENSE for that attack!
–  …!

  Result!
–  A sequence of patches!
–  An arms race!

  Difficulty!
–  We don’t know what other attacks are possible!
–  No guarantees of security!

Wormhole attack!
Sybil attack!
Rushing attack!
!
ARIADNE!
TESLA!

4/45!

©  July 13, 2010 , P. R. Kumar !

The problem of defending against attacks!

  Given a protocol, we can harden it against a particular attack!

  Result: a hardened protocol that is immune to that particular
attack!

  But can we develop a protocol that is immune to all attacks?!

  We cannot even list all attacks, let alone develop defenses
attack by attack!

  So what can we do?!

5/45!

©  July 13, 2010 , P. R. Kumar !

Need for a system-theoretic approach!
  System-theoretic view: Every attack is a policy in a given model

of the system!

  So the goal is to develop a Model Based Defense!
–  Assume a model of capabilities for the attacker!
–  Defend against all capabilities!

  Defend against Byzantine behavior of malicious nodes!

  The good nodes have to publish a protocol and follow it!
  Now we get a game between protocols and Byzantine behavior!
  What is a model of the system for which we can develop such a

theory and a complete suite of protocols?!

6/45!

©  July 13, 2010 , P. R. Kumar !

But what about Performance?!

  There may be many protocols that can defend against attacks!
–  How do we choose among them?!
–  Reminiscent of “throughput optimality” vs. “throughput optimality with

low delay”!

  We can postulate a performance measure: A Utility function U(x)	

  Now we get a zero-sum game:!

  Can we develop a max-min optimal super-protocol?!
–  A complete suite of protocols!

  Further questions: What type of performance measure?!
–  Long term, Transient performance, etc!

Max
Protocols announced and followed by good nodes

Min
Byzantine behavior of bad nodes

U(x)

7/45!

©  July 13, 2010 , P. R. Kumar !

Goals!
  Can we develop a system-theoretic principled and holistic

approach to security?!
–  Where Security is addressed first, not an afterthought!
–  Performance is addressed second; and it is optimized while preserving security!
–  Reverse of the usual approach!

  Security objective!
–  A system-theoretic clean slate approach to secure wireless networking!
–  Provable security: Guaranteed if model assumptions satisfied!

»  Subsequently, model assumptions can be attacked/challenged!
–  Develop a complete suite of algorithms/protocols!
–  An “existence theorem,” if you will, or as providing algorithms!

  Also a performance guarantee: Max-Min Optimality!
–  Max is over protocols!
–  Min is over all actions of malicious nodes!

8/45!

©  July 13, 2010 , P. R. Kumar !

A lot of explanation is clearly needed …!

9/45!

©  July 13, 2010 , P. R. Kumar !

Basic objective!

  A complete suite of algorithms/protocols that takes you!

  From startup!
–  With just a set of nodes!
–  Some good!
–  Some bad!
–  Good nodes don’t know who  

the bad nodes are!
!
  To an optimized functional  

network carrying data reliably!

10/45!

©  July 13, 2010 , P. R. Kumar !

What can go wrong with a network
formed in presence of bad nodes?!

  Some nodes are bad. What can go wrong?!

  Lots of things. A bad node could!
–  Refrain from relaying a packet!
–  Advertise a wrong hop count!
–  Advertise a wrong logical topology!
–  Jam!
–  Cause packet collisions!
–  Behave uncooperatively vis-à-vis medium access!
–  Disrupt attempts at cooperative scheduling!
–  Drop an “ACK”!
–  Refuse to acknowledge a neighbor’s handshake!
–  Behave inconsistently!

“Byzantine” 
behavior!

11/45!

©  July 13, 2010 , P. R. Kumar !

Main results on security-cum-performance!

Theorem

  The described protocol suite yields a network that is Max-Min
optimal with respect to the utility function!

!

  Actually, the protocol suite achieves a stronger result: 
It attains Min-Max optimality and is thus a saddle-point:!

!

  In fact the protocol suite provides an even stronger result: 
It attains!

!
!

Min
All behaviors of bad nodes

Max
Protocols

U(x)

Min
Bad nodes can choose to either Jam or Cooperate

Max
Protocols

U(x)

Max
Protocols

Min
All behaviors of bad nodes

U(x)

12/45!

©  July 13, 2010 , P. R. Kumar !

Bottom line!

!

  Bad nodes are restricted to Jamming or Cooperating
consistently on each concurrent transmission set!

  Nobody can prevent jamming or cooperating!

  Other Byzantine behaviors are ruled out!
–  Dropping ACKs, lying, etc.!

Min
Bad nodes can choose to either Jam or Cooperate

Max
Protocols

U(x)

13/45!

©  July 13, 2010 , P. R. Kumar !

Why would a bad node ever cooperate?!
  U(x) = Min(xi)	

  C is far away
  Low signal/interference at B	

  If C jams, it can only slightly reduce xAB

  If C pretends to be good, it gets an equal share, and

  C causes more harm by cooperating and getting “fair share”

xAB	
 xCB	

A! B! C!

lim
BC→∞

xAB = 0

lim
BC→∞

xAB = x
Max
AB

14/45!

©  July 13, 2010 , P. R. Kumar !

Fundamental ingredients of our approach!

  Standard cryptographic primitives are assumed!
–  All packets encrypted!
–  Bad nodes cannot create fake packets, or alter good packets without

getting caught, etc.!

  And, importantly: Clocks and synchronization!
–  Without a notion of time, we cannot even talk of throughput!
–  Without throughput we cannot talk of network Utility!
–  So time is an essential ingredient!

–  With notion of common time, nodes can cooperate temporally, can share
resources in a time-based way!

–  Cooperative scheduling, etc., will be possible!

–  So synchronization will be a fundamental ingredient!

15/45!

©  July 13, 2010 , P. R. Kumar !

Model: Assumptions – 1!
  Bounded domain!
  n nodes, some bad!
  Minimum distance between any pair of nodes!
  Nodes are not mobile!

  Finite set of modulation schemes!

  Or can assume more about physical layer!
–  Max power constraint at each node!
–  Noise at each node!
–  Path loss is a function of distance!
–  SINR based rate!

+!

Noise!

 0

1
r4

Path loss!

16/45!

©  July 13, 2010 , P. R. Kumar !

Model: Assumptions – 2!

  Connectedness!
–  Suppose all nodes transmit at Max power!
–  Let us say there is an edge between each pair of nodes (i, j)

which can communicate at lowest rate modulation scheme!
–  Or there is an edge between each pair of nodes 

(i, j) an for which SINRij and SINRji both exceed
SINRthreshold!

!
– Assumption!

» Resulting graph is connected!
» Subgraph of good nodes is 

also connected!

17/45!

©  July 13, 2010 , P. R. Kumar !

Model: Assumptions – 3!

  Affine clock at each node!
–  0 < 1- ε ≤ Skew ≤ 1 + δ for all nodes!

  Digital clocks!
–  Clocks tick “digitally” – causing imprecision!
–  Clocks wrap around	

  System start-up!
  All nodes are born within a bounded time of each other!

–  Primordial birth!

Offset b2	

Skew a2	

τ1	

τ2	

18/45!

©  July 13, 2010 , P. R. Kumar !

Model: Assumptions – 4!

  Packets take a delay 
dij from node i to node j	

  Cryptographic assumptions!
–  Each node has a private key, public key!

  Network Utility function!

U x U xij ij
i j

() ()
(,)

= -
All conforming pairs

dij	

dji	

Node i! Node j!

19/45!

©  July 13, 2010 , P. R. Kumar !

Clocks over wireless networks!

20/45!

©  July 13, 2010 , P. R. Kumar !

Clock synchronization over wireless
networks!

  Knowledge of time is important in Networks!
–  Communication network protocols!
–  Sensor network applications!
–  Networked control!
–  And for security: Clock 

synchronization can be  
helpful vis-à-vis security!

  However no two clocks agree  
!

  How to synchronize clocks 
in wireless networks?!

  And what about security of clock synchronization itself?!

21/45!

©  July 13, 2010 , P. R. Kumar !

τ2

τ1 d12
s1

r1

d12
s3

r3

d21
r4

s4

s2 = a2 (r2 − d21)+ b2
r2

d21

s2

r1 = a2 (s1 + d12)+ b2

r1
s2
r3
s4
...

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

s1 1 0 1
r2 0 −1 1
s3 1 0 1
r4 0 −1 1
...

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

a2
a2d12
a2d21
b2

!

"

#
#
#
#

$

%

&
&
&
&

!Rank 3:  
Cannot estimate 4 parameters!

It is impossible to synchronize two
clocks!

–  It is impossible to determine (d12, d21, a2, b2) 
through any packet exchanges!

  Theorem (Graham & K ‘04)!
d12	

d21	

Reference  
Clock 1!

Clock 2!

Offset b2	

Skew a2	

τ1	

τ2	

22/45!

©  July 13, 2010 , P. R. Kumar !

So what is determinable?!
  Theorem (Graham & K '04) !

i.  The skew a2 can be estimated correctly.!
ii.  The round-trip delay (d1j + dj1) can be estimated precisely.!
iii.  The sender can predict the receiver's time at which receiver receives a packet.!
iv.  The offset is unknown. It represents one undeterminable degree of freedom.!
v.  Delays are affine functions of the unknown offset.!
vi.  By invoking causality, we can determine an interval in which the offset lies!

Proof!

â2
â2d̂12
â2d̂21
b̂2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

a2
*

a2
*d12

*

a2
*d21

*

0

!

"

#
#
#
#

$

%

&
&
&
&

+ b̂2

0
−1
1
1

!

"

#
#
#
#

$

%

&
&
&
& d̂12 ≥ 0 and d̂21 ≥ 0 ⇒ b̂2 ∈[−a2

*d21
* ,a2

*d12
*]

a2
* :=

r1,2
(k) − r1,2

(l)

s1
(k) − s1

(l)

d12
* :=

r1,2
(k) − a2

*s1
(k)

a2
* d21

* :=
a2
*r2,1
(l) − s2

(l)

a2
*

r1,2
(k) = a2s1

(k) + a2d12 + b2 = a2
*s1
(k) + a2

*d12
*

r1
s2
r3
s4
...

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

s1 1 0 1
r2 0 −1 1
s3 1 0 1
r4 0 −1 1
...

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

a2
a2d12
a2d21
b2

!

"

#
#
#
#

$

%

&
&
&
&

23/45!

©  July 13, 2010 , P. R. Kumar !

Interplay between clock
synchronization and security 

 
!

24/45!

©  July 13, 2010 , P. R. Kumar !

A fundamental possibility in wireless
networks: Man-in-the-middle!

  To what extent can a Man-in-the-Middle remain
undetected?!

  Can we synchronize clocks in spite of the Man-in-
the-Middle? !
!

  Suppose all messages are encrypted: Then!
–  M cannot decrypt any messages between S to R!
–  M cannot alter any messages between S and R!
–  M cannot create any fake messages between S and R!

  So M has to provide a logical channel between S
and R!

 S!

 R!

 M!

 S!

 R!

 M!

25/45!

©  July 13, 2010 , P. R. Kumar !

But what can Man-in-the-Middle do
with respect to Delay?!

26/45!

©  July 13, 2010 , P. R. Kumar !

Affine forwarding policy!
  Without Man-in-the-Middle!

–  Time received is affine in!
–  Coefficient is estimate of skew!

!
  With Man-in-the-Middle!

  M’s forwarding policy!
–  Packet received at τ	

–  Forwarded at F(τ)	

  Receipt time  
 
has to be affine in!

  So F(τ) has to be affine in τ !
	

S!

R!

τ
S

a
SR

τ
S

τ
S

τ
S
+ d

SR

a
SR

τ
S
+ d

SR() + bSR

τ
S
+ d

SM

F τ
S
+ d

SM()

a
SR

F τ
S
+ d

SM() + dMR() + bSR

a
SR

F τ
S
+ d

SM()+ dMR()+ bSR

τ
S

M!

S!

R!

27/45!

©  July 13, 2010 , P. R. Kumar !

Expansionary affine forwarding policy!
  Consider affine forwarding policy !

  Causality!
!
  Forwarding packet can only take place  

after receiving packet!

!
!
  So !

F τ() =α
F
τ +β

F

α
F
τ
S
+ d

SM()+βF ≥τ
S
+ d

SM
 for all τ

S

α
F
≥1

τ
S

τ
S
+ d

SM

α
F
τ
S
+ d

SM() + βF

M!

S!

R!

28/45!

©  July 13, 2010 , P. R. Kumar !

M can only add a constant delay to
all packets!

  Estimate of skew = Coefficient of !
!
  So skew estimate made by R  

with reference to S is!
!
  Backward path skew estimate made by S 

with reference to R is!
!
  But product of skew estimates has to be 1!

  But and!

  So!
  Forwarding time is pure delay: !

α
F
≥1 α

B
≥1

α
F
=α

B
= 1

τ
S

M!

S!

R!

τ
S

τ
S
+ d

SM

α
F
τ
S
+ d

SM() + βF

a
SR

α
F
τ
S
+ d

SM() + βF
+ d

MR() + bSR

a
SR
α
F

a
RS
α
B

a
SR
α
F
a
RS
α
B
=α

F
α
B
= 1

F τ() = τ + βF

β
B M!

S!

R!

β
F

a
SR
α

F

a
RS
α

B

29/45!

©  July 13, 2010 , P. R. Kumar !

Now on to the scheme …!

30/45!

©  July 13, 2010 , P. R. Kumar !

Phases of operation of protocol suite!

turn
on!

data transfer phase!
no!

yes!

scheduling !
phase!

network
discovery !

phase!

data
transfer !
phase!

verification!
phase!

time !
expired?!

terminate!

neighbor
discovery !

phase!

31/45!

©  July 13, 2010 , P. R. Kumar !

The challenges – 1!

  Nodes need to discover who their neighbors are!
–  Require a two-way handshake between the nodes!
–  How can we guarantee that any two nodes can communicate packets

with each other when other nodes are liable to transmit at the same time
and cause collisions?!

–  Need an orthogonal medium access scheme!
–  Must operate with clocks that are not synchronized and tick at different

and unknown rates!

  Nodes will need to synchronize their clocks with neighbors!
–  Need to work with fundamental limitations on clock synchronization!
–  Nodes can synchronize their skews but not their offsets which are

indistinguishable from delays!

32/45!

©  July 13, 2010 , P. R. Kumar !

The challenges – 2!

  Nodes need to form a network!
–  Require network wide consistency checks!
–  Individual links may look OK, but there could be more

complicated hidden inconsistencies !
–  Everything has to be done in the presence of malicious nodes

while under attack!

  Nodes draw up a schedule for transmissions and send
data!
–  Some malicious nodes that conformed hitherto or remained

hidden hitherto may not cooperate!
–  This requires a check to detect malicious behavior and another

round of network wide computation with the un-cooperating nodes
being taken into account!

33/45!

©  July 13, 2010 , P. R. Kumar !

The challenges – 3!

  Challenge caused by clock wrap-around, which allows
“replay attack”!

  So above has to be done with a finite bound on clocks!

  Also has to be done in the presence of skew errors!

  More challenges since we also aim for ε-optimality over
network lifetime!

34/45!

©  July 13, 2010 , P. R. Kumar !

  Each node attempts to discover its neighbors via two-way
handshake!
–  Problem of uncoordinated communication!
–  Node i has to transmit when  

node j is listening!
–  Clocks have differing skews and times!
–  Need a way for every pair of nodes to communicate!
–  Orthogonal MAC code!

W!

Neighbor discovery phase – 1  
Orthogonal MAC Code!

Theorem!
There exists an Orthogonal MAC code that allows any
pair of neighbors to exchange a message of size W,
within a bounded time!

35/45!

©  July 13, 2010 , P. R. Kumar !

  Each node attempts to discover its neighbors identities and
clock parameters!
–  Skew can be estimated!
–  But not offset!

Neighbor discovery phase – 2: 
Clocks!

Theorem!
There exists a protocol that enables any pair of
unsynchronized, half-duplex neighbors to!
(i)  Determine their relative clock skew to within a

desired error!
(ii)  Bound relative clock offset!
(iii)  Learn and authenticate each other’s identities in a

mutually signed link certificate!

36/45!

©  July 13, 2010 , P. R. Kumar !

Network discovery phase – 1: 
Topological view!

  Each good node attempts to discover topology of the
network and relative clock parameters of all the other nodes!
–  Views should be common and internally consistent!
–  Malicious nodes can lie!
–  Each node broadcasts its information about its neighbors!
–  Byzantine General’s algorithm!

Theorem!
The good nodes will decide on the same topological
view after a bounded number of transmissions. !

37/45!

©  July 13, 2010 , P. R. Kumar !

Network discovery phase – 2: 
Clocks!

  Internal information in common views may be inconsistent!
–  There may be two paths with different 

clock skew products along paths!
–  Impossible to determine which path is 

correct from declared clock skews alone!

  Consistency check protocol!
–  Procedure to detect one malicious link!
–  There will be an inconsistent cycle, with  

skew product differing greatly from 1!
–  Wait for estimated and actual clock to diverge  

enough!
–  Transmit a packet around cycle that each node  

must immediately forward!

38/45!

©  July 13, 2010 , P. R. Kumar !

Problem of unsynchronized
coordination!

  Problem of coordination is prior to synchronization!
•  Each stage of Neighbor Discovery phase, Byzantine General’s algorithm,

and Consistency Check, must be completed simultaneously by network!
•  However, clocks have different skews and nodes will proceed through

each stage at different speeds!
  Solution!

•  Assign increasingly larger intervals to each stage so that each node will
complete the stage in the same interval regardless of clock skew and
offset.!

Theorem!
There exists a schedule that allows unsynchronized
nodes to simultaneously complete a finite number of
protocol stages within a bounded time!

39/45!

©  July 13, 2010 , P. R. Kumar !

The Scheduling Phase!
  The good nodes determine an optimal schedule!

–  Schedule determines optimal end-to-end data rates for each
S-D pair!

–  Based on time sharing concurrent transmission sets!
–  Schedules packets in each concurrent transmission set!
–  But estimates of reference clock may diverge because of

quantization error in skew estimate – insert “guard bands”!

Theorem!
There exists a schedule that allows a network of
synchronized nodes to maximize its utility over a set of
feasible concurrent transmission sets and ensure the
rate loss due to clock divergence and overhead is
arbitrarily small!

x1	

x2	

40/45!

©  July 13, 2010 , P. R. Kumar !

The Data Transfer Phase!

time !
expired?!

terminate!

turn
on!

neighbor
discovery !

phase!

network
discovery !

phase!
scheduling !

phase!

data
transfer !
phase!

time !
expired?!

terminate!

verification!
phase!

terminate!

41/45!

©  July 13, 2010 , P. R. Kumar !

The Data Transfer Phase!

  Nodes are expected to conform to the schedule and
transmit or relay packets accordingly!

  But malicious nodes may disable a concurrent
transmission set by not cooperating!

  Each node records a “failed” packet and concurrent
transmission set!

  So we need Verification and iterative pruning!

42/45!

©  July 13, 2010 , P. R. Kumar !

The Verification Phase!

  Each node broadcasts the failed concurrent transmission set
for the lowest numbered packet that did not arrive!

  Byzantine Generals algorithm ensures a common view!
  One failed concurrent transmission set is pruned!
  Network returns to Scheduling Phase!turn

on!

data transfer phase!
time !

expired?!
no!

neighbor
discovery !

phase!

network
discovery !

phase!
scheduling !

phase!

data
transfer !
phase!

verification!
phase!

43/45!

©  July 13, 2010 , P. R. Kumar !

Min-Max Optimality!

  Can bound the loss due to failed concurrent transmission set
in data transfer phases, clock skew and divergence errors, and
all overheads!

  Min-Max Optimality!
•  Let Θf denote set of disabled concurrent transmission sets!
•  Let C denote the set of all concurrent transmission sets!

Theorem!
The utility achieved by the protocol over the entire
operating lifetime is near min max optimal!€

max
P(C \Θ f)

U ≥min
Θ
max
P (C \Θ)

U

44/45!

©  July 13, 2010 , P. R. Kumar !

Some remarks!
  Extensions!

–  Nodes not born within bounded time of each other!
–  Probabilistic receptions!
–  Mobility – gives rise to time-varying system!
–  Abstractions/assumptions can be attacked!
–  Information theoretic security!

  Lots of issues!
–  What performance measure?!
–  Long transients, overhead in transient period!

  Perhaps!
–  These results can serve as an “existence proof”!
–  Can serve as suggesting an architecture for secure wireless networks!
–  Follow up work to mitigate overheads: “Optimization after security”!
–  Work may spawn alternative architectures for secure networking!

45/45!

©  July 13, 2010 , P. R. Kumar !

Thank you	�

